Skip to main content
Log in

Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals

  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The technology of large-scale plant cell culture is feasible for the industrial production of plant-derived fine chemicals. Due to low or no productivity of the desired compounds the economy is only in a few cases favorable. Various approaches are studied to increase yields, these encompass screening and selection of high producing cell lines, media optimization, elicitation, culturing of differentiated cells (organ cultures), immobilization. In recent years metabolic engineering has opened a new promising perspectives for improved production in a plant or plant cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berlin J, Rügenhagen C, Dietze P, Fecker LF, Goddijn OJM, Hoge JHC (1993) Transgenic Res. 2: 336–344.

    Google Scholar 

  • Bongaerts RJM (1998) The chorismate branching point in Catharanthus roseus. Ph.D. Thesis, Leiden University.

  • Brodelius PE, Funk C, Haener A, Villegas M (1989) Phytochemistry 28: 2651–2655.

    Google Scholar 

  • Canel C, Lopez-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JHC, Verpoorte R (1998) Planta 205: 414–419.

    Google Scholar 

  • Chapell J (1995) Annu. Rev. Plant Physiol. Mol. Biol. 46: 521–547.

    Google Scholar 

  • Collinge MA Brodelius PE (1989) Phytochemistry 28: 1101–1105.

    Google Scholar 

  • Doernenburg H, Knorr D (1995) Enzyme Microbiol. Technol. 17: 674–684.

    Google Scholar 

  • Doran PM (1997) Hairy Roots. Amsterdam: Harwood Academic Publishers, pp. 43–49.

    Google Scholar 

  • Dos Santos R, Schripsema J, Verpoorte R (1994) Phytochemistry 35: 677–681.

    Google Scholar 

  • Ebel J (1998) BioEssays 20: 569–576.

    Google Scholar 

  • Ebel J, Cosio EG (1994) Int. Rev. Cytol. 148: 1–36.

    Google Scholar 

  • Eilert U (1987) In: Vasil IM, ed. Cell Culture and Somatic Cell Genetics of Plants. Vol. 4. San Diego: Academic Press, pp. 153–164.

    Google Scholar 

  • Eilert U, Kurz WGW, Constabel F (1985) J. Plant Physiol. 119: 65–76.

    Google Scholar 

  • Farnsworth NR (1988) In: Wilson EO, Peters FM, eds. Biodiversity. New York: Academic Press, pp. 61–73.

    Google Scholar 

  • Farnsworth NR, Soejarto DD (1991) In: Akerele O, Heywood V, Synge H, eds. Conservation of Medicinal Plants. Cambridge: Cambridge University Press, pp. 25–52.

    Google Scholar 

  • Fuyita Y, Tabata M (1987) In: Green CE, Somers DA, Hackett WP, Biesboer DD et al., eds. Plant Tissue and Cell Culture. New York: Alan R. Liss, pp. 169–185.

    Google Scholar 

  • Geerlings A, Verpoorte R, van der Heijden R, Memelink J. A Method for Producing Terpenoid-Indole Alkaloids. International Patent Application.

  • Goddijn OJM, Lohman FP, de Kam RJ, Schilperoort RA, Hoge JHC (1994) Mol. Gen. Genet. 242: 217–225.

    Google Scholar 

  • Goddijn OJM, Pennings EJM, van der Helm P, Verpoorte R, Hoge JHC (1995) Transgen. Res. 4: 315–323.

    Google Scholar 

  • Grotewold E, Chamberlin M, Snook M, Siame B, Butler L, Swenson J, Maddock S, St Clair G, Bowen B (1998) Plant Cell 10: 721–740.

    Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM, Zenk MH (1992) Proc. Natl. Acad. Sci. USA 89: 2389–2393.

    Google Scholar 

  • Hahlbrock D, Scheel (1994) Cell 78: 449–456.

    Google Scholar 

  • Hahn MG, Cheong JJ, Alba R, Enkerli J, Coté F (1993) In: Fritig B, Legrand M, eds. Mechanisms of Plant Defense Responses. Dordrecht: Kluwer Academic Publishers, p. 99.

    Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stoecker RH, Stenzel K (1993) Nature 361: 153–156.

    Google Scholar 

  • Hall RD, Yeoman MM (1986) New Phytol. 103: 33–43.

    Google Scholar 

  • Hallard D, van der Heijden R, Verpoorte R, Lopez-Cardoso I, Pasquali G, Memelink J, Hoge JHC (1997a) Plant Cell Rep. 17: 50–54.

    Google Scholar 

  • Hallard D, Geerlings A, van der Heijden R, Lopez-Cardoso I, Hoge JHC, Verpoorte R (1997) In: Doran PM, ed. Hairy Roots. Amsterdam: Harwood Academic Publishers, pp. 43–49.

    Google Scholar 

  • Harborne JB, ed. (1978) Biochemical Aspects of Plant and Animal Coevolution, Vol. 15. London: Academic Press. Ann. Proc. Phytochem. Soc. Europe.

  • Harborne JB, Tomas-Barberan FA (1991) Ecological Chemistry and Biochemistry of Plant Terpenoids. Oxford: Oxford Science Publications, pp. 159–208.

    Google Scholar 

  • Hashimoto T, Yun D-J, Yamada Y (1993) Phytochemistry 32: 713–718.

    Google Scholar 

  • Hoekstra SS, Harkes PAA, Libbenga KR, Verpoorte R (1990) Plant Cell Rep. 8: 571–574.

    Google Scholar 

  • Holton TA, Cornish EC (1995) Plant Cell 7: 1071–1083.

    Google Scholar 

  • Hrazdina G, Wagner G (1985) Arch. Biochem. Biophys. 237: 88–100.

    Google Scholar 

  • Hulst AC, Tramper JJ (1989) Enzyme Microbiol. Technol. 11: 564–568.

    Google Scholar 

  • Jaziri M, Zhiri A, Guo Y-W, Dupont J-P, Shimomura K, Hamada H, Vanhaelen M, Homes J (1996) Plant Cell Tiss. Org. Cult. 46: 59–75.

    Google Scholar 

  • Kilby NJ, Hunter C (1990) Appl. Microbiol. Biotechnol. 33: 448–451.

    Google Scholar 

  • Kinghorn AD, Balandrin MF, eds. (1993) Human Medicinal Agents from Plants. Washington: ACS Symposium Series 534.

  • Kurz WGW, Constabel F, Eilert U, Tyler RT (1987) In: Breimer DD, Speiser P, eds. Topics in Pharmaceutical Sciences. Amsterdam: Elsevier, p. 283.

    Google Scholar 

  • Leckie F, Scragg AH, Cliffe KC (1990) In: Nijkamp HJJ, van der Plas LHW, van Aartrijk J, eds. Progress in Plant Cellular and Molecular Biology. Dordrecht: Kluwer Academic Publishers, pp. 689–693.

    Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997a) J. Physiol. Plant. 101: 643–652.

    Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch, Rohmer M (1997b) FEBS Lett. 400: 271–274.

    Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Science 258: 1773–1775.

    Google Scholar 

  • Martin C (1996) Curr. Biol. 7: 130–138.

    Google Scholar 

  • Meijer JJ (1989). Effects of hydrodynamic and chemical/osmotic stress on plant cells in a stirred bioreactor. Ph.D. Thesis, Technical University Delft.

  • Meijer JJ, Van Gulik WM., Ten Hoopen HJG, Luyben KChAM (1987) In: Neijssel OM, van der Meer RR, Luyben KChAM, eds. Proceedings 4th European Congress Biotechnology, Vol. 2. Amsterdam: Elsevier, p. 409.

    Google Scholar 

  • Mirjalli N, Linden JC (1996) Biotechnol. Prog. 12: 110–118.

    Google Scholar 

  • Mol JNM, Holton TA, Koes RE (1995) Trends Biotechnol. 13: 350–355.

    Google Scholar 

  • Ohta S, Verpoorte R (1992) Ann. Rep. Nat. Sci. Home Econ. 32: 9–23.

    Google Scholar 

  • Oksman-Caldentey KM, Arroo R (1999) In: Verpoorte R, Alfermann AW, eds. Metabolic Engineering of Plant Secondary Metabolism. Dordrecht: Kluwer Academic Publishers, in press.

    Google Scholar 

  • Poulsen C, Verpoorte R (1991) Phytochemistry 30: 377–386.

    Google Scholar 

  • Poulsen C, Goddijn OJM, Hoge JHC, Verpoorte R (1994) Transgenic Res. 3: 43–49.

    Google Scholar 

  • Pras N (1992) J. Biotechnol. 26: 29.

    Google Scholar 

  • Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Biochem. J. 295: 517–524.

    Google Scholar 

  • Romero RM, Roberts MF, Phillipson JD (1995) Phytochemistry 39: 263–276.

    Google Scholar 

  • Sato F, Endo T, Hashimoto T, Yamada Y (1982) In: Fujiwara A, ed. Plant Tissue Culture 1982. Tokyo: Mazuren, p. 319.

    Google Scholar 

  • Schripsema J, Dagnino D, dos Santos R, Verpoorte R. (1994) Plant Cell Tiss. Org. Cult. 38: 301–307.

    Google Scholar 

  • Schulte U, El-Shagi H, Zenk MH (1984) Plant Cell Rep. 3: 51–54.

    Google Scholar 

  • Schumacher HM, Gundlach H, Fiedler F, Zenk MH (1987) Plant Cell Rep. 6: 410.

    Google Scholar 

  • Scragg AH, Allen EJ, Bond PA, Smart NJ (1986) In: Morris P et al., eds. Secondary Metabolism in Plant Cell Cultures. Cambridge: Cambridge University Press, pp. 178–194.

    Google Scholar 

  • Siebert M, Sommer S, Li S, Wang Z, Severin K, Heide L (1996) Plant Physiol. 112: 811–819.

    Google Scholar 

  • Sierra, M, van der Heijden R, van der Leer T, Verpoorte R (1992) Plant Cell. Tiss. Org. Cult. 28: 59–68.

    Google Scholar 

  • Smith CJ (1996) New Phytol. 132: 1–45.

    Google Scholar 

  • Songstad DD, De Luca V, Brisson N, Kurz WGW, Nessler CL (1990) Plant Physiol. 94: 1410–1413.

    Google Scholar 

  • Srere PA (1987) Annu. Rev. Biochem. 56: 21–56.

    Google Scholar 

  • Stephanopoulos G, Vallino JJ (1991) Science 252: 1675–1681.

    Google Scholar 

  • Su WW (1995) Appl. Biochem. Biotechnol. 50: 189–230.

    Google Scholar 

  • Van der Heijden R, Verpoorte R (1989) Plant Cell Tiss. Org. Cult. 18: 231–245.

    Google Scholar 

  • Van Gulik WM, Meijer JJ, van der Heijden R, Verpoorte R, ten Hoopen HJG (1988) Feasibility of raubasine production by cell cultures of Catharanthus roseus. Report of Biotechnology Delft Leiden.

  • Verpoorte R (1999) In: Verpoorte R, Alfermann AW, eds. Metabolic Engineering of Plant Secondary Metabolism. Dordrecht: Kluwer Academic Publishers, in press.

    Google Scholar 

  • Verpoorte R, van der Heijden R, van Gulik WM, ten Hoopen HJG (1991) In: Brossi A, ed. The Alkaloids, Vol. 40. San Diego: Academic Press, pp. 1–187.

    Google Scholar 

  • Verpoorte R, van der Heijden R, Moreno PRH (1997) In: Cordell GA, ed. The Alkaloids, Vol. 49. San Diego: Academic Press, pp. 221–299.

    Google Scholar 

  • Verpoorte R, van der Heijden R, Memelink J (1998) In: Cordell GA, ed. The Alkaloids, Vol. 50. San Diego: Academic Press, pp. 453–508.

    Google Scholar 

  • Waller GR, Nowacki EK (1978) Alkaloid Biology and Metabolism in Plants. New York: Plenum Press.

    Google Scholar 

  • Westphal K (1990) In: Nijkamp HJJ, van der Plas LHW, van Aartrijk J, eds. Progress in Plant Cellular and Molecular Biology. Dordrecht: Kluwer Academic Publishers, pp. 601–608.

    Google Scholar 

  • Whitmer S, Canel C, Hallard D, Goncalves C, Verpoorte R (1998) Plant Physiol. 116: 853–857.

    Google Scholar 

  • Wijnsma R, Go JTKA, van Weerden IN, Harkes PAA, Verpoorte R, Baerheim Svendsen A (1985) Plant Cell Rep. 4: 241–245.

    Google Scholar 

  • Yun D-J, Hashimoto T, Yamada Y (1992) Proc. Natl. Acad. Sci. USA 89: 11799–11803.

    Google Scholar 

  • Zaprometov MN (1988) In: Constabel F, Vasil IM, eds. Cell Culture and Somatic Cell Genetics of Plants, Vol. 5. Academic Press: San Diego, pp. 77 and 89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verpoorte, R., van der Heijden, R., ten Hoopen, H. et al. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnology Letters 21, 467–479 (1999). https://doi.org/10.1023/A:1005502632053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005502632053

Navigation