Skip to main content
Log in

Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The genome of Arabidopsis thaliana contains about 400 genes coding for glycosyltransferases, many of which are predicted to be involved in the synthesis and remodelling of cell wall components. We describe the isolation of a transposon-tagged mutant, parvus, which under low humidity conditions exhibits a severely dwarfed growth phenotype and failure of anther dehiscence resulting in semi-sterility. All aspects of the mutant phenotype were partially rescued by growth under high-humidity conditions, but not by the application of growth hormones or jasmonic acid. The mutation is caused by insertion of a maize Dissociation (Ds) element in a gene coding for a putative Golgi-localized glycosyltransferase belonging to family 8. Members of this family, originally identified on the basis of similarity to bacterial lipooligosaccharide glycosyltransferases, include enzymes known to be involved in the synthesis of bacterial and plant cell walls. Cell-wall carbohydrate analyses of the parvus mutant indicated reduced levels of rhamnogalacturonan I branching and alterations in the abundance of some xyloglucan linkages that may, however, be indirect consequences of the mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonetta, D.T., Facette, M., Raab, T.K. and Somerville, C.R. 2002. Genetic dissection of plant cell-wall biosynthesis. Biochem. Soc. Transact. 30: 298–306.

    Google Scholar 

  • Bonin, C.P., Potter, I., Vanzin, G.F. and Reiter, W.-D. 1997. The MUR1 gene of Arabidopsis thaliana encodes an isoform of GDPD-mannose 4,6-dehydratase catalysing the first step in the de novo synthesis of GDP-L-fucose. Proc. Natl. Acad. Sci. USA 94: 2085–2090.

    PubMed  Google Scholar 

  • Bouton, S., Leboeuf, E., Mouille, G., Leydecker, M.-T., Talbotec, J., Granier, F., Lahaye, M., Hofte, H. and Truong, H.-N. 2002. QUASIMODO1 encodes a putative membrane-bound glycosyltransferase required for normal pectin synthesis and cell adhesion in Arabidopsis. Plant Cell 14: 2577–2590.

    PubMed  Google Scholar 

  • Campbell, J.A., Davies, G.J., Bulone, V. and Henrissat, B. 1997. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326: 929–942.

    PubMed  Google Scholar 

  • Carpita, N.C. and Gibeaut, D.M. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3: 1–30.

    PubMed  Google Scholar 

  • Carpita, N.C. and Shea, E.M. 1989. Linkage structure of carbohydrates by gas chromatography-mass spectrometry (GC-MS) of partially methylated alditol acetates. In: C.J. Biermann and G.D. McGinnis (Eds.) Analysis of Carbohydrates by GLC and MS, CRC Press, Boca Raton, FL, pp. 157–216.

    Google Scholar 

  • Cheong, Y.H., Chang, H.-S., Gupta, R., Wang, X. Zhu, T. and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 661–677.

    PubMed  Google Scholar 

  • Darley, C.P., Forrester, A.M. and McQueen-Mason, S.J. 2001. The molecular basis of cell wall extension. Plant Mol. Biol. 47: 179–195.

    PubMed  Google Scholar 

  • Delmer, D.P. 1999. Cellulose biosynthesis: exciting times for a dif-ficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 245–276.

    PubMed  Google Scholar 

  • Durrant, W.E., Rowland, O., Piedras, P., Hammond-Kosack, K.E. and Jones, J.D. 2000. cDNA-AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12: 963–977.

    PubMed  Google Scholar 

  • Freshour, G., Clay, R.P., Fuller, M.S., Albersheim, P., Darvill, A.G. and Hahn, M.G. 1996. Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol. 110: 1413–1429.

    PubMed  Google Scholar 

  • Fridborg, I., Kuusk, S., Moritz, T. and Sundberg, E. 1999. The Arabidopsis dwarf mutant shi exhibits reduced gibberellin responses conferred by overexpression of a new putative zinc finger protein. Plant Cell 11: 1019–1032.

    PubMed  Google Scholar 

  • Gibeaut, D.M. and Carpita, N.C. 1991. Tracing the biosynthesis of the cell wall in intact cells and plants. Selective turnover and alteration of cytoplasmic and cell wall polysaccharides of proso millet cells in liquid culture and Zea mays seedlings. Plant Physiol. 97: 551–561.

    Google Scholar 

  • Gotschlich, E.C. 1994. Genetic locus for the biosynthesis of the variable portion of Neisseria gonorrhoeae lipooligosaccharide. J. Exp. Med. 180: 2181–2190.

    PubMed  Google Scholar 

  • Henrissat, B., Coutinho, P.M. and Davies, G.J. 2001. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol. Biol. 47: 55–72.

    PubMed  Google Scholar 

  • Iwai, H., Masaoka, N., Ishii, T. and Satoh, S. 2002. A pectin glucuronyltransferase gene is essential for intercellular attachment in the plant meristem. Proc. Natl. Acad. Sci. USA 99: 16319–16324.

    PubMed  Google Scholar 

  • Jambunathan, N., Siani, J.M. and McNellis, T.W. 2001. A humiditysensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13: 2225–2240.

    PubMed  Google Scholar 

  • Jarvis, M.C. and McCann, M.C. 2000. Cell wall biophysics: concepts and methodology. Plant Biochem. Physiol. 38: 1–13.

    Google Scholar 

  • Kieliszewsi, M.J. and Lamport, D.T.A. 1994. Extensin: repetitive motifs, functional sites, post-translational codes, and phylogeny. Plant J. 5: 157–172.

    PubMed  Google Scholar 

  • Knox, J.P., Linstead, P.J., Peart, J., Cooper, C. and Roberts, K. 1991. Developmentally regulated epitopes of the cell surface arabinogalactan proteins and their relation to root tissue pattern formation. Plant J. 1: 317–326.

    Google Scholar 

  • Kobayashi, M., Matoh, T. and Azuma, J. 1996. Two chains of rhamnogalacturonan II are cross-linked by borate diol ester bonds in higher plant cell walls. Plant Physiol. 110: 1017–1020.

    PubMed  Google Scholar 

  • Long, D., Swinburne, J., Martin, M., Wilson, K., Sundberg, E., Lee, K. and Coupland, G. 1993. Analysis of the frequency of inherit-ance of transposed Ds elements in Arabidopsis after activation by a CaMV 35S promoter fusion to the Ac transposase gene. Mol. Gen. Genet. 241: 627–636.

    PubMed  Google Scholar 

  • Long, D., Martin, M., Sundberg, E., Swinburne, J., Puangsomlee, P. and Coupland G. 1997. The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc. Natl. Acad. Sci. USA 90: 10370–10374.

    Google Scholar 

  • O'Neill, M., Albersheim, P. and Darvill, A. 1990. The pectic polysaccharides of primary cell walls. In: P.M. Dey and J.B. Harborne (Eds.) Methods in Plant Biochemistry, Academic Press, London, pp. 415–441.

    Google Scholar 

  • O'Neill, M.A., Eberhard, S., Albersheim, P. and Darvill, A.G. 2001. Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294: 846–849.

    PubMed  Google Scholar 

  • Oomen, R.J., Doeswijk-Voragen, C.H., Bush, M.S., Vincken, J.P., Borkhardt, B., van den Broek, L.A., Corsar, J., Ulvskov, P., Voragen, A.G., McCann, M.C. and Visser, R.G. 2002. In muro fragmentation of the rhamnogalacturonan I backbone in potato (Solanum tuberosum L.) results in a reduction and altered location of the galactan and arabinan side-chains and abnormal periderm development. Plant J. 30: 403–413.

    PubMed  Google Scholar 

  • Perrin, R., Wilkerson, C. and Keegstra, K. 2001. Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Plant Mol. Biol. 47: 115–130.

    PubMed  Google Scholar 

  • Rayon, C., Cabanes-Macheteau, M., Loutelier-Bourhis, C., Salliot-Maire, I., Lemoine, J., Reiter, W.D., Lerouge, P. and Faye, L. 1999. Characterization of N-glycans from Arabidopsis. Application to a fucose-deficient mutant. Plant Physiol. 119: 725–733.

    PubMed  Google Scholar 

  • Reiter, W.-D., Chapple, C. and Somerville, C.R. 1997. Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J. 12: 335–345.

    PubMed  Google Scholar 

  • Reiter, W.-D. 2002 Biosynthesis and properties of the plant cell wall. Curr. Opin. Plant Biol. 5: 536–542.

    PubMed  Google Scholar 

  • Rhee, S.Y. and Somerville, C.R. 1998. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J. 15: 79–88.

    PubMed  Google Scholar 

  • Richmond, T.A. and Somerville, C.R. 2001. Integrative approaches to determining CSL function. Plant Mol. Biol. 47: 131–143.

    PubMed  Google Scholar 

  • Ridley, B.L., O'Neill, M.A. and Mohnen, D. 2001. Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57: 929–967.

    PubMed  Google Scholar 

  • Rost, B., Fariselli, P. and Casadio, R. 1996. Topology prediction for helical transmembrane proteins at 86% accuracy. Protein Sci. 5: 1704–1718.

    PubMed  Google Scholar 

  • Ryan, E., Grierson, C.S., Cavell, A., Steer, M. and Dolan, L. 1998. TIP1 is required for both tip growth and non-tip growth in Arabidopsis. New Phytol. 138: 49–58.

    Google Scholar 

  • Ryden, P., Sugimoto-Shirasu, K., Smith, A.C., Findlay, K., Reiter, W.D., McCann, M.C. 2003. Tensile properties of Arabidopsis cell walls depend on both a xyloglucan cross-linked microfibrillar network and rhamnogalacturonan II-borate complexes. Plant Physiol. 132: 1033–1040.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Sanders, P.M., Lee, P.Y., Biesgen, C., Boone, J., Beals, T.P., Weiler, E.W. and Goldberg, R.B. 2000. The Arabidopsis DELAYED DEHISCENCE1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12: 1041–1081.

    PubMed  Google Scholar 

  • Shevell, D.E., Kunkel T. and Chua, N.H. 2000. Cell wall alterations in the Arabidopsis emb30 mutant. Plant Cell 12: 2047–2060.

    PubMed  Google Scholar 

  • Sørensen, S.O., Pauly, M., Bush, M.S., Skjøt, M., McCann, M.C., Borkhardt, B. and Ulvskov, P. 2000. Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-α-D-galactanase. Proc. Natl Acad. Sci. USA 97: 7639–7644.

    PubMed  Google Scholar 

  • Sprenger, N. and Keller, F. 2000. Allocation of raffinose family oligosaccharides to transport and storage pools in Ajuga reptans: the roles of two distinct galactinol synthases. Plant J. 21: 249–258.

    PubMed  Google Scholar 

  • Sterling, J.D., Quigley, H., Orellana, A. and Mohnen, D. 2001. The catalytic site of the pectin biosynthetic enzyme α-1,4-galacturonosyltransferase is located in the lumen of the Golgi. Plant Physiol. 127: 360–371.

    PubMed  Google Scholar 

  • Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. 2002. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana. Plant J. 29: 417–426.

    PubMed  Google Scholar 

  • Tavares, R., Aubourg, S., Lecharny, A., and Kreis, M. 2000. Organization and structural evolution of four multigene families in Arabidopsis thaliana: AtCAD, AtLGT, AtMYST and AtHD-GL2. Plant Mol. Biol. 42: 703–717.

    PubMed  Google Scholar 

  • Thompson, J.D., Higgins, D.G. and Gibson, T.J. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22: 4673–4680.

    PubMed  Google Scholar 

  • Willats, W.G.T., Steele-King, C.G., McCartney, L., Orfila, C., Marcus, S.E. and Knox, J.P. 1999. Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J. 20: 619–628.

    PubMed  Google Scholar 

  • Willats, W.G., McCartney, L., Mackie, W. and Knox, J.P. 2001. Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47: 9–27.

    PubMed  Google Scholar 

  • Yoshioka, K., Kachroo, P., Tsui, F., Sharma, S.B., Shah, J. and Klessig, D.F. 2001. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant J. 26: 447–459.

    PubMed  Google Scholar 

  • Zablackis, E., York, W.S., Pauly, M., Hantus, S., Reiter, W.D., Chapple, C.C.S., Albersheim, P. and Darvill, A. 1996. Substitution of L-fucose by L-galactose in cell walls of Arabidopsis mur1. Science 272: 1808–1810.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony A. Kavanagh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lao, N.T., Long, D., Kiang, S. et al. Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis . Plant Mol Biol 53, 687–701 (2003). https://doi.org/10.1023/B:PLAN.0000019074.60542.6c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000019074.60542.6c

Navigation