Skip to main content
Log in

FRET Studies of the Interaction of Dimeric Cyanine Dyes with DNA

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence Resonance Energy Transfer (FRET) is a powerful tool to determine distances between chromophores bound to macromolecules, since the efficiency of the energy transfer from an initially excited donor to an acceptor strongly depends on the distance between the two dye molecules. The structure of the noncovalent complex of double-strand DNA (dsDNA) with thiazol orange dimers (TOTO) allows FRET analysis of two intercalated chromophores. By intercalation of two different TOTO dyes we observe an energy transfer from TOTO-1 as donor and TOTO-3 as acceptor. In this manner we are able to determine the mean distance between two proximate TOTO molecules bound to dsDNA. Thus the maximum number of binding positions for this type of intercalation dyes in the dsDNA can be obtained. Furthermore the dependency of the acceptor emission on the donor concentration is analysed. The emission of TOTO-3 reaches a maximum when the acceptor-to-donor ratio is 1:10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Rye, S. Yue, D. E. Wemmer, M. A. Quesada, R. P. Haugland, R. A. Mathies, and A. N. Glazer (1992). Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes—Properties and applications. Nucleic Acids Res. 20(11), 2803-2812.

    Google Scholar 

  2. J. A. Bordelon, K. J. Feierabend, S. A. Siddiqui, L. L. Wright, and J. T. Petty (2002). Viscometry and atomic force microscopy studies of the interactions of a dimeric cyanine dye with DNA. J. Phys. Chem. B 106(18), 4838-4843.

    Google Scholar 

  3. A. N. Glazer and H. S. Rye (1992). Stable dye-DNA intercalation complexes as reagents for high-sensitivity fluorescence detection. Nature 359(6398), 859-861.

    Google Scholar 

  4. N. Milanovich, M. Suh, R. Jankowiak, G. J. Small, and J. M. Hayes (1996). Binding of TO-PRO-3 and TOTO-3 to DNA: Fluorescence and hole-burning studies. J. Phys. Chem.-Us 100(21), 9181-9186.

    Google Scholar 

  5. J. P. Jacobsen, J. B. Pedersen, L. F. Hansen, and D. E. Wemmer (1995). Site-selective bis-intercalation of a homodimeric thiazole orange-dye in DNA oligonucleotides. Nucleic Acids Res. 23(5), 753-760.

    Google Scholar 

  6. H. P. Spielmann, D. E. Wemmer, and J. P. Jacobsen (1995). Solution structure of a DNA complex with the fluorescent bis-intercalator TOTO determined by NMR-spectroscopy. Biochemistry.-Us 34(27), 8542-8553.

    Google Scholar 

  7. S. Laib, M. Rankl, T. Ruckstuhl, and S. Seeger (2003). Sizing of fluorescently stained DNA-fragments by surface scanning microscopy. Nucleic Acids Res. 31(22), e138.

    Google Scholar 

  8. P. M. Goodwin, W. P. Ambrose, H. Cai, W. K. Grace, E. J. Larson, B. L. Marrone, J. H. Jett, J. H. Werner, and R. A. Keller (2002). in J. J. Kasianowicz, M. S. Z. Kellermayer, and D. W. Deamer (Eds.), Structure and Dynamics of Confined Polymers, Kluwer Academic, Dordecht, The Netherlands, pp. 351-370.

    Google Scholar 

  9. R. M. Clegg (1996). in X. F. Wang and B. Herman (Eds.), Fluorescence Imaging Spectroscopy and Microscopy, Wiley, New York, pp. 179-252.

    Google Scholar 

  10. L. Stryer (1978). Fluorescence energy-transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819-846.

    Google Scholar 

  11. J. R. Lakowicz (1999). Principles of Flourescence Spectroscopy, 2nd ed. Kluwer Academic/Plenum, New York.

    Google Scholar 

  12. T. Förster (1968). in O. Sinanoglu (Ed.), Modern Quantum Chemistry, Academic Press, New York, p. 93.

    Google Scholar 

  13. T. Förster (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Ann. Phys. 2, 55-75.

    Google Scholar 

  14. R. E. Harrington (1970). Flow birefringence of persistence length deoxyribonucleic acid—hydrodynamic properties, optical anisotropy, and hydration shell anisotropy. J. Am. Chem. Soc. 92(23), 6957-6964.

    Google Scholar 

  15. B. P. Maliwal, J. Kusba, and J. R. Lakowicz (1995). Fluorescence energy-transfer in one-dimension—frequency-domain fluorescence study of DNA-fluorophore complexes. Biopolymers 35(2), 245-255.

    Google Scholar 

  16. B. W. van der Meer (2002). Kappa-squared: From nuisance to new sense. Rev. Mol. Biotechnol. 82, 181-196.

    Google Scholar 

  17. J. M. Schins, A. Agronskaia, B. G. de Grooth, and J. Greve (1999). Orientation of the chromophore dipoles in the TOTO-DNA system. Cytometry 37(3), 230-237.

    Google Scholar 

  18. J. L. Mergny, A. S. Boutorine, T. Garestier, F. Belloc, M. Rougee, N. V. Bulychev, A. A. Koshkin, J. Bourson, A. V. Lebedev, B. Valeur, N. T. Thuong, and C. Helene (1994). Fluorescence energy-transfer as a probe for nucleic-acid structures and sequences. Nucleic Acids Res. 22(6), 920-928.

    Google Scholar 

  19. J. R. Lakowicz, G. Piszczek, and J. S. Kang (2001). On the possibility of long-wavelength long-lifetime high-quantum-yield luminophores. Anal. Biochem. 288(1), 62-75.

    Google Scholar 

  20. M. T. Record, C. F. Anderson, and T. M. Lohman (1978). Thermodynamic analysis of ion effects on binding and conformational equilibria of proteins and nucleic-acids—Roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys. 11(2), 103-178.

    Google Scholar 

  21. W. D. Wilson (1999). In E. T. Kool (Ed.), DNA and Aspects of Molecular Biology, Comprehensive Natural Products Chemistry. Pergamon, Amsterdam, pp. 427-476.

    Google Scholar 

  22. X. M. Yan, W. K. Grace, T. M. Yoshida, R. C. Habbersett, N. Velappan, J. H. Jett, R. A. Keller, and B. L. Marrone (1999). Characteristics of different nucleic acid staining dyes for DNA fragment sizing by flow cytometry. Anal. Chem. 71(24), 5470-5480.

    Google Scholar 

  23. D. M. Crothers (1968). Calculation of binding isotherms for heterogeneous polymers. Biopolymers 6(4), 575-580.

    Google Scholar 

  24. R. W. Armstrong, U. P. Strauss, and T. Kurucsev (1970). Interaction between acridine dyes and deoxyribonucleic acid. J. Am. Chem. Soc. 92(10), 3174-3180.

    Google Scholar 

  25. D. G. Xu and T. M. Nordlund (2000). Sequence dependence of energy transfer in DNA oligonucleotides. Biophys. J. 78(2), 1042-1058.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Seeger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laib, S., Seeger, S. FRET Studies of the Interaction of Dimeric Cyanine Dyes with DNA. Journal of Fluorescence 14, 187–191 (2004). https://doi.org/10.1023/B:JOFL.0000016290.34070.ee

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOFL.0000016290.34070.ee

Navigation