Skip to main content
Log in

The Plant Dehydrins: Structure and Putative Functions

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This review deals with recent data on the structure and biochemical properties of dehydrins, proteins that are normally synthesized in maturating seeds during their desiccation, and also in vegetative tissues of plants treated with abscisic acid or exposed to environmental stress factors that result in cellular dehydration. The dehydrins are considered as stress proteins involved in formation of plant protective reactions against dehydration. The generally accepted classification of dehydrins is based on their structural features, such as the presence of conserved sequences, designated as Y-, S-, and K-segments. The K-segment representing a highly conserved 15 amino acid motif (EKKGIMDKIKEKLPG) forming amphiphilic α-helix has been found in all dehydrins. The pathways of regulation of dehydrin gene expression, putative functions of dehydrins, and molecular mechanisms of their actions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dure, L., III, Greenway, S. C., and Galau, G. A. (1981) Biochemistry, 20, 4162-4168.

    Google Scholar 

  2. Galau, G. A., and Dure, L., III (1981) Biochemistry, 20, 4169-4178.

    Google Scholar 

  3. Galau, G. A., Hughes, D. W., and Dure, L., III (1986) Plant Mol. Biol., 7, 155-170.

    Google Scholar 

  4. Choi, J. H., Liu, L., Borkird, C., and Sung, Z. R. (1987) Proc. Natl. Acad. Sci. USA, 84, 1906-1910.

    Google Scholar 

  5. Hong, B., Uknes, S. J., and Ho, T.-H. D. (1988) Plant Mol. Biol., 11, 495-506.

    Google Scholar 

  6. Mundy, J., and Chua, N.-H. (1988) EMBO J., 7, 2279-2286.

    Google Scholar 

  7. Lits, J. C., Colwell, G. W., Chakerian, R. L., and Quatrano, R. S. (1987) Nucleic Acids Res., 15, 3607-3618.

    Google Scholar 

  8. Close, T. J., and Lammers, P. J. (1993) Plant Physiol., 101, 773-779.

    Google Scholar 

  9. Close, T. J., Fenton, R. D., and Moonan, F. (1993) Plant Mol. Biol., 23, 279-286.

    Google Scholar 

  10. Close, T. J. (1996) Physiol. Plant., 96, 795-803.

    Google Scholar 

  11. Dure, L., III, Crouch, M., Harada, J., Ho, T.-H. D., Mundy, J., Quatrano, R., Thomas, T., and Sung, Z. R. (1989) Plant Mol. Biol., 12, 475-486.

    Google Scholar 

  12. Bray, E. A. (1993) Plant Physiol., 103, 1035-1040.

    Google Scholar 

  13. Dure, L., III (1993) in Response of Plants to Cellular Dehydration during Environmental Stress (Close, T. J., and Bray, E., eds.) American Society for Plant Physiology, Rockville, pp. 91-103.

    Google Scholar 

  14. Baker, J., Steele, C., and Dure, L., III (1988) Plant Mol. Biol., 11, 277-291.

    Google Scholar 

  15. Close, T. J. (1997) Physiol. Plant., 100, 291-296.

    Google Scholar 

  16. Zhu, B., Choi, D.-W., Fenton, R., and Close, T. J. (2000) Mol Gen. Genet., 264, 145-153.

    Google Scholar 

  17. Ramanjulu, S., and Bartels, D. (2002) Plant Cell Environment, 25, 141-151.

    Google Scholar 

  18. Close, T. J., Kortt, A. A., and Chandler, P. M. (1989) Plant Mol. Biol., 13, 95-108.

    Google Scholar 

  19. Ceccardi, T. L., Meyer, N. C., and Close, T. J. (1994) Prot. Exp. Purific., 5, 266-269.

    Google Scholar 

  20. Campbell, S. A., Crone, D. E., Ceccardi, T. L., and Close, T. J. (1998) Plant Mol. Biol., 38, 417-423.

    Google Scholar 

  21. Ismail, A. M., Hall, A. E., and Close, T. J. (1999) Plant Physiol., 120, 237-244.

    Google Scholar 

  22. Wisniewski, M., Webb, R., Balsamo, R., Close, T. J., Yu, X.-M., and Grifith, M. (1999) Physiol. Plant., 105, 600-608.

    Google Scholar 

  23. Svensson, J., Palva, E. T., and Welin, B. (2000) Prot. Exp. Purific., 20, 169-178.

    Google Scholar 

  24. Danyluk, J., Perron, A., Houde, M., Limin, A., Fowler, B., Benhamou, N., and Sarhan, F. (1998) Plant Cell, 10, 623-638.

    Google Scholar 

  25. Sarhan, F., Ouellet, F., and Vazquez-Tello, A. (1997) Physiol. Plant., 101, 439-445.

    Google Scholar 

  26. Jarvis, S. B., Taylor, M. A., MacLeod, M. R., and Davies, H. V. J. (1996) Plant Physiol., 147, 559-566.

    Google Scholar 

  27. Goday, A., Jensen, A. B., Culianez-Macia, F. A., Alba, M. M., Figueras, M., Serratosa, J., Torrent, M., and Pages, M. (1994) Plant Cell, 6, 360-361.

    Google Scholar 

  28. Godoy, J., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R. M., and Pintor-Toro, J. A. (1994) Plant. Mol. Biol., 26, 1921-1934.

    Google Scholar 

  29. Campbell, S. A., and Close, T. J. (1997) New Phytol., 137, 61-74.

    Google Scholar 

  30. Choi, D.-W., Zhu, B., and Close, T. J. (1999) Theor. Appl. Genet., 98, 1234-1247.

    Google Scholar 

  31. Choi, D.-W., and Close, T. J. (2000) Theor. Appl. Genet., 100, 1274-1278.

    Google Scholar 

  32. Levi, A., Panta, G. R., Parmentier, C. M., Muthalif, M. M., Arora, R., Shanker, S., and Rowland, L. (1999) Physiol. Plant., 107, 98-109.

    Google Scholar 

  33. Close, T. J., Meyer, N. C., and Radick, J. (1995) Plant Physiol., 107, 289-290.

    Google Scholar 

  34. Richard, S., Morency, M. J., Drevet, C., Jouanin, L., and Seguin, A. (2000) Plant Mol. Biol., 1, 1-10.

    Google Scholar 

  35. Ismail, A. M., Hall, A. E., and Close, T. J. (1999) Proc. Natl. Acad. Sci. USA, 96, 13566-13570.

    Google Scholar 

  36. Bewley, J. D., Reynolds, T. L., and Oliver, M. J. (1993) in Response of Plants to Cellular Dehydration during Environmental Stress (Close, T. J., and Bray, E., eds.) American Society for Plant Physiology, Rockville, pp. 193-201.

    Google Scholar 

  37. Li, R., Brawley, S. H., and Close, T. J. (1998) J. Phycol., 34, 642-650.

    Google Scholar 

  38. Kontunen-Soppela, S., Taulavuori, K., Taulavuori, E., Lahdesmaki, P., and Laine, K. (2000) Physiol. Plant., 109, 404-409.

    Google Scholar 

  39. Nylander, M., Svensson, J., Palva, E. T., and Welin, B. V. (2001) Plant Mol. Biol., 45, 263-279.

    Google Scholar 

  40. Bomal, C., Le, V. Q., and Tremblay, F. M. (2002) Physiol. Plant., 115, 523-530.

    Google Scholar 

  41. Reynolds, T. L., and Bewley, J. D. (1993) J. Exp. Bot., 269, 1771-1779.

    Google Scholar 

  42. Hellwege, E. M., Dietz, K.-J., Volk, O. H., and Hartung, W. (1994) Planta, 194, 525-531.

    Google Scholar 

  43. Stephens, R. S., Kalman, S., Lammel, C. J., Fan, J., Marathe, R., Aravind, L., Mitchell, W. P., Olinger, L., Tatusov, H. L., Zhao, Q., Koonin, E. V., and Davis, R. W. (1998) Science, 282, 754-759.

    Google Scholar 

  44. Adams, M. D., Celniker, S. E., Holt, R. A., Evans, C. A., Gocayne, J. D., Amanatides, P. G., Scherer, S. E., Li, P. W., Hoskins, R. A., Galle, R. F., and George, R. A. (2000) Science, 287, 2185-2195.

    Google Scholar 

  45. Robertson, M., and Chundler, P. M. (1992) Plant Mol. Biol., 19, 1031-1044.

    Google Scholar 

  46. Busk, P. K., and Pages, M. (1998) Plant Mol. Biol., 37, 425-435.

    Google Scholar 

  47. Lang, V., Robertson, M., and Chandler, P. M. (1998) Theor. Appl. Genet., 96, 1193-1199.

    Google Scholar 

  48. Jiang, Y., and Huang, B. (2002) Crop Science, 42, 202-207.

    Google Scholar 

  49. Welling, A., Moritz, T., Palva, E. T., and Juntilla, O. (2002) Plant Physiol., 129, 1633-1641.

    Google Scholar 

  50. Leung, J., and Giraudat, J. (1998) Annu. Rev. Plant Physiol. Plant Mol. Biol., 49, 199-222.

    Google Scholar 

  51. Tamminen, I., Makele, P., Heino, P., and Palva, E. T. (2001) Plant J., 25, 1-8.

    Google Scholar 

  52. Houde, M., Danyluk, J., Laliberte, J.-F., Rassart, E., Dhindsa, R. S., and Sarhan, F. (1992) Plant Physiol., 99, 1381-1387.

    Google Scholar 

  53. Kiyosue, T., Yamaguchi-Shinozaki, K., Shinozaki, K., Kamada, H., and Harada, H. (1993) Plant Mol. Biol., 21, 1053-1068.

    Google Scholar 

  54. Whitsitt, M. S., Collins, R. G., and Mullet, J. E. (1997) Plant Physiol., 114, 917-925.

    Google Scholar 

  55. Giordany, T., Natali, L., D'Ercole, A., Pugliesi, C., Fambrini, M., Vernieri, P., Vitagliano, C., and Cavallini, A. (1999) Plant. Mol. Biol., 39, 739-748.

    Google Scholar 

  56. Shinozaki, K., and Yamaguchi-Shinozaki, K. (1997) Plant Physiol., 115, 327-334.

    Google Scholar 

  57. Zhu, J.-K. (2002) Annu. Rev. Plant Biol., 53, 247-273.

    Google Scholar 

  58. Rock, C. D. (2000) New Phytol., 148, 357-396.

    Google Scholar 

  59. Finkelstein, R. R., Gampala, S. S. L., and Rock, C. D. (2002) Plant Cell, 14, 15-45.

    Google Scholar 

  60. Robertson, M., Cuming, A. C., and Chundler, P. M. (1995) Physiol. Plant., 94, 470-478.

    Google Scholar 

  61. Shen, Q., Zhang, P., and Ho, T.-H. D. (1996) Plant Cell, 8, 1107-1119.

    Google Scholar 

  62. Gago, G. M., Almoguera, C., Jordano, J., Gonzalez, D. H., and Chan, R. L. (2002) Plant Cell Environment, 25, 633-640.

    Google Scholar 

  63. Parcy, F., and Giraudat, J. (1997) Plant J., 11, 693-702.

    Google Scholar 

  64. McCarty, D. R., Hattori, T., Carson, C. B., Vasil, V., Lazar, M., and Vasil, I. K. (1991) Cell, 66, 895-905.

    Google Scholar 

  65. Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994) Plant Cell, 6, 251-264.

    Google Scholar 

  66. Stockinger, E. J., Gilmour, S. J., and Thomashow, M. F. (1997) Proc. Natl. Acad. Sci. USA, 94, 1035-1040.

    Google Scholar 

  67. Thomashow, M. F., Gilmour, S., Stockinger, E., Jaglo-Ottosen, K. R., and Zarka, D. G. (2001) Physiol. Plant., 112, 171-175.

    Google Scholar 

  68. Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998) Plant Cell, 10, 1391-1406.

    Google Scholar 

  69. Shinwari, Z. K., Nakashima, K., Miura, S., Kasuga, M., Seki, M., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998) Biochem. Biophys. Res. Commun., 250, 161-170.

    Google Scholar 

  70. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schanbenberger, O., and Thomashow, M. F. (1998) Science, 280, 104-106.

    Google Scholar 

  71. Thomashow, M. F. (1998) Plant Physiol., 118, 1-7.

    Google Scholar 

  72. Thomashow, M. F. (1999) Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 571-599.

    Google Scholar 

  73. Choi, D.-W., Rodriguez, E. M., and Close, T. J. (2002) Plant Physiol., 129, 1781-1787.

    Google Scholar 

  74. Cellier, F., Conejero, G., Breitler, J. C., and Casse, F. (1998) Plant Physiol., 116, 319-328.

    Google Scholar 

  75. Wood, A. J., and Goldsbrough, P. B. (1997) Physiol. Plant., 99, 144-152.

    Google Scholar 

  76. Moons, A., Bauw, G., Prinsen, E., Montagu, M. V., and van der Straeten, D. (1995) Plant Physiol., 107, 177-186.

    Google Scholar 

  77. Robertson, A. J., Weninger, A., Wilen, R. W., Fu, P., and Gusta, L. V. (1994) Plant Physiol., 106, 1213-1216.

    Google Scholar 

  78. Arora, R., and Wisniewski, M. E. (1994) Plant Physiol., 105, 95-101.

    Google Scholar 

  79. Arora, R., Rowland, L. J., and Panta, G. R. (1997) Physiol. Plant., 101, 8-16.

    Google Scholar 

  80. Artlip, T., Callahan, A., Bassett, C., and Wisniewski, M. E. (1997) Plant Mol. Biol., 33, 61-70.

    Google Scholar 

  81. Rinne, P., Kaikuranta, P., van der Plas, L., and van der Schoot, C. (1999) Planta, 209, 377-388.

    Google Scholar 

  82. Lim, C. C., Krebs, S. L., and Arora, R. (1999) Theor. Appl. Genet., 99, 912-920.

    Google Scholar 

  83. Rinne, P., Tuominen, H., and Juntilla, O. (1994) Tree Physiol., 14, 549-561.

    Google Scholar 

  84. Kazuoka, T., and Odeda, K. (1994) Plant Cell Physiol., 35, 601-611.

    Google Scholar 

  85. Houde, M., Daniel, C., Lachapelle, M., Allard, F., Laliberte, S., and Sarhan, F. (1995) Plant J., 8, 583-593.

    Google Scholar 

  86. Artus, N. N., Uemura, M., Steponkus, P. L., Gilmour, S., Lin, C., and Thomashow, M. F. (1996) Proc. Natl. Acad. Sci. USA, 93, 13404-13409.

    Google Scholar 

  87. Thomashow, M. F., Artus, N., Gilmour, S., Stockinger, E., Wilhelm, K., Zarka, D., Joseph, R. A., Uemura, M., and Steponkus, P. J. (1996) Plant Physiol., 111, 29.

    Google Scholar 

  88. Egerton-Warburton, L. M., Balsamo, R. A., and Close, T. J. (1997) Physiol. Plant., 101, 545-555.

    Google Scholar 

  89. Castillo, J., Rodrigo, M. I., Marquez, J. A., Zunniga, A., and Franco, L. (2000) Eur. J. Biochem., 267, 2156-2165.

    Google Scholar 

  90. Castillo, J., Zunniga, A., Franco, L., and Rodrigo, M. I. (2002) Eur. J. Biochem., 269, 4641-4648.

    Google Scholar 

  91. Jensen, A. B., Goday, A., Figueras, M., Jessop, A. C., and Pages, M. (1998) Plant J., 13, 691-697.

    Google Scholar 

  92. Israelachvili, J., and Wennerstron, H. (1996) Nature, 379, 219-225.

    Google Scholar 

  93. Steponkus, P. L., Uemure, M., and Webb, M. S. (1993) in Response of Plants to Cellular Dehydration during Environmental Stress (Close, T. J., and Bray, E., eds.) American Society for Plant Physiology, Rockville, pp. 37-47.

    Google Scholar 

  94. Mayhew, M., and Hartl, F. U. (1996) in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neidhardt, F., ed.) American Society for Microbiology, Washington, DC, pp. 922-937.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allagulova, C.R., Gimalov, F.R., Shakirova, F.M. et al. The Plant Dehydrins: Structure and Putative Functions. Biochemistry (Moscow) 68, 945–951 (2003). https://doi.org/10.1023/A:1026077825584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026077825584

Navigation