Skip to main content
Log in

Self-Organizing Feature Maps for Modeling and Control of Robotic Manipulators

  • Published:
Journal of Intelligent and Robotic Systems Aims and scope Submit manuscript

Abstract

This paper presents a review of self-organizing feature maps (SOFMs), in particular, those based on the Kohonen algorithm, applied to adaptive modeling and control of robotic manipulators. Through a number of references we show how SOFMs can learn nonlinear input–output mappings needed to control robotic manipulators, thereby coping with important robotic issues such as the excess degrees of freedom, computation of inverse kinematics and dynamics, hand–eye coordination, path-planning, obstacle avoidance, and compliant motion. We conclude the paper arguing that SOFMs can be a much simpler, feasible alternative to MLP and RBF networks for function approximation and for the design of neurocontrollers. Comparison with other supervised/unsupervised approaches and directions for further work on the field are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhoniemi, E., Hollmén, J., Simula, O., and Vesanto, J.: 1999, Process monitoring and modeling using the self-organizing map, Integrated Comput. Aided Engrg. 6(1), 3–14.

    Google Scholar 

  • AraÚjo, A. F. R. and Barreto, G. A.: 2002, Context in temporal sequence processing: A selforganizing approach and its application to robotics, IEEE Trans. Neural Networks 13(1), 45–57.

    Google Scholar 

  • Arras, M. K., Protzel, P. W., and Palumbo, D. L.: 1992, Automatic learning rate adjustment for selfsupervising autonomous robot control, in: K. Schuster (ed.), Applications of Neural Networks, VCH Verlag, Weinheim.

    Google Scholar 

  • Balakrishnan, S. N. and Weil, R. D.: 1996, Neurocontrol: A literature survey, Math. Comput. Modelling 23(1/2), 101–107.

    Google Scholar 

  • Barreto, G. A. and AraÚjo, A. F. R.: 2001a, Time in self-organizing maps: An overview of models, Internat. J. Comput. Res. 10(2), 139–179.

    Google Scholar 

  • Barreto, G. A. and AraÚjo, A. F. R.: 2001b, A self-organizing NARX network and its application to prediction of chaotic time series, in: Proc. of the IEEE-INNS Internat. Joint Conf. on Neural Networks (IJCNN'01), Vol. 3, Washington, DC, pp. 2144–2149.

    Google Scholar 

  • Barreto, G. A. and AraÚjo, A. F. R.: 2002, Temporal associative memory and function approximation with the self-organizing map, in: IEEE Workshop on Neural Networks for Signal Processing, IEEE Press, New York.

    Google Scholar 

  • Behera, L., Gopal, M., and Chaudhury, S.: 1995, Self-organizing neural networks for learning inverse dynamics of robot manipulator, in: Proc. of the IEEE/IAS Internat. Conf. on Industrial Automation and Control, pp. 457–460.

  • Bekey, G. A.: 1992, Robotics and neural networks, in: B. Kosko (ed.), Neural Networks for Signal Processing, Prentice-Hall, Englewood Cliffs, NJ, pp. 161–187.

    Google Scholar 

  • Bernstein, N. A.: 1967, The Coordination and Regulation of Movements, Pergamon Press, Oxford.

    Google Scholar 

  • Buessler, J.-L. and Urban, J.-P.: 1998, Visually guided movements: Learning with modular neural maps in robotics, Neural Networks 11(7/8), 1395–1415.

    Google Scholar 

  • Buessler, J. L., Kara, R., Wira, P., Kihl, H., and Urban, J. P.: 1999, Multiple self-organizing maps to facilitate the learning of visuo-motor correlations, in: Proc. of the IEEE Internat. Conf. on Systems, Man, and Cybernetics, Vol. III, Tokyo, Japan, pp. 470–475.

    Google Scholar 

  • Bullock, D. and Grossberg, S.: 1988, Neural dynamics of planned arm movements: Emergent invariants and speed-accuracy properties during trajectory formation, Psycholog. Review 95, 49–90.

    Google Scholar 

  • Bullock, D., Grossberg, S., and Guenther, F.: 1993, A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm, J. Cognitive Neurosci. 5(4), 408–435.

    Google Scholar 

  • Carpenter, G. A., Grossberg, S., and Rosen, D. B.: 1991, Fuzzy ART: Fast stable learning and categorization of analog patterns by an adaptive resonance system, Neural Networks 4, 759–771.

    Google Scholar 

  • Cervera, E., Pobil, A. P., Marta, E., and Serna, M. A.: 1996, Perception-based learning for motion in contact in task planning, J. Intelligent Robotic Systems 17(3), 283–308.

    Google Scholar 

  • Cimponeriu, A. and Kihl, H.: 1998, Intelligent control with the growing competitive linear local mapping neural network for robotic hand–eye coordination, in: Proc. of the 2nd Internat. Conf. on Knowledge-based Intelligent Electronic Systems (KES'98), Vol. 3, Adelaide, Australia, pp. 46–52.

    Google Scholar 

  • Cohen, M. A. and Grossberg, S.: 1983, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE Trans. Systems Man Cybernet. 13, 815–826.

    Google Scholar 

  • Coiton, Y., Gilhodes, J. C., Velay, J. L., and Roll, J. P.: 1991, A neural network model for the intersensory coordination involved in goal-directed movements, Biological Cybernet. 66, 167–176.

    Google Scholar 

  • Cottrell, M.: 1998, Theoretical aspects of the SOM algorithm, Neurocomputing 21, 119–138.

    Google Scholar 

  • Craig, J. J.: 1989, Introduction to Robotics: Mechanics and Control, 2nd ed., Addison-Wesley, Reading, MA.

    Google Scholar 

  • Cruse, H., Wischmeyer, E., Brüwer, M., Brockfeld, P., and Dress, A.: 1990, On the cost functions for the control of the human arm movement, Biological Cybernet. 62, 519–528.

    Google Scholar 

  • de Angulo, V. R. and Torras, C.: 1996, Automatic recalibration of a space robot: An industrial prototype, in: Proc. of the Internat. Conf. on Artificial Neural Networks (ICANN'96), Bochum, Germany, pp. 635–640.

  • de Angulo, V. R. and Torras, C.: 1997, Self-calibration of a space robot, IEEE Trans. Neural Networks 8(4), 951–963.

    Google Scholar 

  • Delgado, A.: 2000, Control of nonlinear systems using a self-organising neural network, Neural Comput. Appl. 9(2), 113–123.

    Google Scholar 

  • DeMers, D. and Kreutz-Delgado, K.: 1996, Canonical parameterization of excess motor degrees of freedom with self-organizing maps, IEEE Trans. Neural Networks 7(1), 43–55.

    Google Scholar 

  • Deo, A. S. and Walker, I. D.: 1995, Overview of damped least-squares methods for inverse kinematics of robot manipulators, J. Intelligent Robotic Systems 14(1), 43–68.

    Google Scholar 

  • Faldella, E., Fringuelli, B., Passeri, D., and Rosi, L.: 1997, A neural approach to robotic haptic recognition of 3-d objects based on a Kohonen self-organizing feature map, IEEE Trans. Industr. Electronics 44(2), 267–269.

    Google Scholar 

  • Flash, T. and Hogan, N.: 1995, Optimization principles in motor control, in: M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, pp. 682–685.

    Google Scholar 

  • Gaudiano, P. and Grossberg, S.: 1991, Vector associative maps: Unsupervised real-time error-based learning and control of movement trajectories, Neural Networks 4, 147–183.

    Google Scholar 

  • Glasius, R., Komoda, A., and Gielen, S.: 1996, A biologically inspired neural net for trajectory formation and obstacle avoidance, Biological Cybernet. 84, 511–520.

    Google Scholar 

  • Golnazarian, W. and Hall, E. L.: 2000, Intelligent industrial robots, in: R. L. Shell and E. L. Hall (eds), The Handbook of Industrial Automation, Marcel Dekker, New York.

    Google Scholar 

  • Grossberg, S.: 1988, Nonlinear neural networks: Principles, mechanisms, and architectures, Neural Networks 1, 17–61.

    Google Scholar 

  • Grossberg, S. and Kuperstein, M.: 1986, Neural Dynamics of Adaptive Sensory-Motor Control, Elsevier, Amsterdam.

    Google Scholar 

  • Heikkonen, J. and Koikkalainen, P.: 1997, Self-organization and autonomous robots, in: O. Omidvar and P. van der Smagt (eds), Neural Systems for Robotics, Academic Press, New York, pp. 297–337.

    Google Scholar 

  • Hesselroth, T., Sarkar, K., van der Smagt, P., and Schulten, K.: 1994, Neural network control of a pneumatic robot arm, IEEE Trans. Systems Man Cybernet. 24(1), 28–38.

    Google Scholar 

  • Hunt, K. J., Sbarbaro, D., Zbikowski, R., and Gawthrop, P. J.: 1992, eural networks for control systems – A survey, Automatica 28(6), 1083–1112.

    Google Scholar 

  • Hutchinson, S., Hager, G., and Corke, P.: 1996, A tutorial on visual servo control, IEEE Trans. Robotics Automat. 12(5), 651–670.

    Google Scholar 

  • Jockusch, J.: 2000, Exploration based on neural networks with applications in manipulator control, Unpublished doctoral dissertation, Faculty of Technology, Neuroinformatic Group, University of Bielefeld, Bielefeld, Germany.

    Google Scholar 

  • Jockusch, J. and Ritter, H.: 1999, An instantaneous topological mapping model for correlated stimuli, in: Proc. of the Internat. Joint Conf. on Neural Networks (IJCNN'99),Washington, pp. 529–534.

  • Jones, M. and Vernon, D.: 1994, Using neural networks to learn hand–eye co-ordination, Neural Computing Appl. 2, 2–12.

    Google Scholar 

  • Kathib, O.: 1986, Real-time obstacle avoidance for manipulators and mobile robots, Internat. J. Robotics Res. 5, 90–98.

    Google Scholar 

  • Kihl, H., Urban, J.-P., Gresser, J., and Hagmann, S.: 1995, Neural network based hand–eye positioning with a transputer-based system, in: Proc. of the Internat. Conf. on High Performance Computing and Networking, Milan, Italy, pp. 281–286.

  • Kohonen, T.: 1990, The self-organizing map, Proc. IEEE 78, 1464–1480.

    Google Scholar 

  • Kohonen, T.: 1997, Self-Organizing Maps, 2nd extended ed., Springer, Berlin/Heidelberg.

    Google Scholar 

  • Kohonen, T., Oja, E., Simula, O., Visa, A., and Kangas, J.: 1996, Engineering applications of the self-organizing map, Proc. IEEE 84(10), 1358–1384.

    Google Scholar 

  • Kosko, B.: 1990, Unsupervised learning in noise, IEEE Trans. Neural Networks 1(1), 44–57.

    Google Scholar 

  • Kung, S.-Y. and Hwang, J.-N.: 1989, Neural network architectures for robotic applications, IEEE Trans. Robotics Automat. 5(5), 641–657.

    Google Scholar 

  • Kuperstein, M.: 1991, INFANT neural controller for adaptive sensory-motor coordination, Neural Networks 4, 131–145.

    Google Scholar 

  • Kuperstein, M. and Rubistein, J.: 1989, Implementation of an adaptive neural controller for sensory-motor coordination, IEEE Control Systems Mag. 9(3), 25–30.

    Google Scholar 

  • Martinetz, T. M. and Schulten, K. J.: 1991, A “neural-gas” network learns topologies, in: T. Kohonen, K. Makisara, O. Simula, and J. Kangas (eds), Artificial Neural Networks, North-Holland, Amsterdam, pp. 397–402.

    Google Scholar 

  • Martinetz, T. and Schulten, K.: 1993, A neural network for robot control: Cooperation between neural units as a requirement for learning, Comput. Electrical Engrg. 19(4), 315–332.

    Google Scholar 

  • Martinetz, T. and Schulten, K.: 1994, Topology representing networks, Neural Networks 7(3), 507–522.

    Google Scholar 

  • Martinetz, T. M., Ritter, H. J., and Schulten, K. J.: 1990, Three-dimensional neural net for learning visuomotor coordination of a robot arm, IEEE Trans. Neural Networks 1(1), 131–136.

    Google Scholar 

  • Massone, L. L. E.: 1995, Sensorimotor learning, in: M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, pp. 860–864.

    Google Scholar 

  • Medler, D. A.: 1998, A brief history of connectionism, Neural Computing Surveys 1, 61–101.

    Google Scholar 

  • Menzel, R., Woelfl, K., and Pfeiffer, F.: 1993, The development of a hydraulic hand, in: Proc. of the 2nd Conf. on Mechatronics and Robotics, Duisburg/Moers, Germany, pp. 225–238.

    Google Scholar 

  • Miller, W. T., Sutton, R. S., and Werbos, P. J.: 1990, Neural Networks for Control, MIT Press, Cambridge, MA.

    Google Scholar 

  • Morasso, P. and Sanguineti, V.: 1995, Self-organizing body schema for motor planning, J. Motor Behavior 27(1), 52–66.

    Google Scholar 

  • Morasso, P., Sanguineti, V., and Spada, G.: 1997, A computational theory of targeting movements based on force fields and topology representing networks, Neurocomputing 15, 411–434.

    Google Scholar 

  • Murray, R. M., Li, Z., and Sastry, S. S.: 1994, A Mathematical Introduction to Robotics: Mechanics and Control, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Narendra, K. S. and Annaswamy, A. M.: 1989, Stable Adaptive Systems, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Nehmzow, U.: 1998, Self-supervised and supervised acquisition of smooth sensory-motor competences in mobile robots, in: H. Cruse, H. Ritter, and J. Dean (eds), Prerational Intelligence in Robotics, Kluwer Academic, Dordrecht.

    Google Scholar 

  • Prabhu, S. M. and Garg, D. P.: 1996, Artificial neural network based robot control: An overview, J. Intelligent Robotic Systems 15, 333–365.

    Google Scholar 

  • Psaltis, D., Sideris, A., and Yamamura, A. A.: 1988, A multilayered neural network controller, IEEE Control Systems Mag. 8(2), 17–21.

    Google Scholar 

  • Raibert, M. H. and Horn, B. K. P.: 1978, Manipulator control using the configuration space method, Industr. Robot 5, 69–73.

    Google Scholar 

  • Ritter, H.: 1991, Learning with the self-organizing map, in: T. Kohonen, K. Makisara, O. Simula, and J. Kangas (eds), Artificial Neural Networks, Vol 1, North-Holland, Amsterdam, pp. 379–384.

    Google Scholar 

  • Ritter, H.: 1993, Parametrized self-organizing maps, in: Proc. of the Internat. Conf. on Artificial Neural Networks (ICANN'93), Springer, Berlin, pp. 568–575.

    Google Scholar 

  • Ritter, H. and Schulten, K.: 1987, Planning a dynamic trajectory via path finding in discretized phase space, in: Parallel Processing: Logic, Organization, and Technology, Vol. 253, Springer, Berlin, pp. 29–39.

    Google Scholar 

  • Ritter, H., Martinetz, T., and Schulten, K.: 1989, Topology conserving maps for learning visuomotor coordination, Neural Networks 2, 159–168.

    Google Scholar 

  • Ritter, H., Martinetz, T., and Schulten, K.: 1992, Neural Computation and Self-Organizing Maps: An Introduction, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Roy, A.: 2000, Artificial neural networks: A science in trouble, SIGKDD Explorations 1(2), 33–38.

    Google Scholar 

  • Rylatt, M., Czarnecki, C., and Routen, T.: 1998, Connectionist learning in behaviour-based mobile robots: A survey, Artificial Intelligence Rev. 12, 445–468.

    Google Scholar 

  • Sbarbaro, D. and Bassi, D.: 1995, A nonlinear controller based on self-organizing maps, in: Proc. of the IEEE Internat. Conf. on Systems, Man, and Cybernetics, Vancouver, CA, pp. 1774–1777.

  • Sciavicco, L. and Siciliano, B.: 2000, Modelling and Control of Robot Manipulators, 2nd edn, Springer, Berlin.

    Google Scholar 

  • Simula, O., Ahola, J., Alhoniemi, E., Himberg, J., and Vesanto, J.: 1999, Self-organizing map in analysis of large-scale industrial systems, in: E. Oja and S. Kaski (eds), Kohonen Maps, Elsevier, Amsterdam, pp. 375–387.

    Google Scholar 

  • Srinivasa, N. and Sharma, R.: 1997, SOIM: A self-organizing invertible map with applications in active vision, IEEE Trans. Neural Networks 8(3), 758–773.

    Google Scholar 

  • Szepesvári, C. and Lörincz, A.: 1998, An integrated architecture for motion-control and path-planning, J. Robotic Systems 15(1), 1–15.

    Google Scholar 

  • Torras, C.: 1995, Robot control, in: M. A. Arbib (ed.), The Handbook of Brain Theory and Neural Networks, MIT Press, Cambridge, MA, pp. 820–823.

    Google Scholar 

  • Tzafestas, S. G.: 1995, Neural networks in robot control, in: S. G. Tzafestas and H. B. Verbruggen (eds), Artificial Intelligence in Industrial Decision Making, Control and Automation, Kluwer, Dordrecht, pp. 327–387.

    Google Scholar 

  • Vesanto, J. and Alhoniemi, E.: 2000, Clustering of the self-organizing map, IEEE Trans. Neural Networks 11(3), 586–600.

    Google Scholar 

  • Vukobratovic, M.: 1997, How to control robots interacting with dynamic environment, J. Intelligent Robotic Systems 19(2), 119–152.

    Google Scholar 

  • Vukobratovic, M. and Tuneski, A.: 1996, Adaptive control of single rigid robotic manipulators interacting with dynamic environment – An overview, J. Intelligent Robotic Systems 17(1), 1–30.

    Google Scholar 

  • Walter, J.: 1996, Rapid Learning in Robotics, Cuvillier Verlag, Göttingen.

    Google Scholar 

  • Walter, J.: 1998, PSOM network: Learning with few examples, in: Proc. of the Internat. Conf. on Robotics and Automation (ICRA'98), Leuven, Belgium, pp. 2054–2059.

    Google Scholar 

  • Walter, J. and Ritter, H.: 1995, Investment learning with hierarchical PSOM, in: D. Touretzky, M. Mozer, and M. Hasselmo (eds), Advances in Neural Information Processing Systems 8 (NIPS'95), MIT Press, Bradford, pp. 570–576.

    Google Scholar 

  • Walter, J. and Ritter, H.: 1996, Rapid learning with parametrized self-organizing maps, Neurocomputing 12, 131–153.

    Google Scholar 

  • Walter, J. A. and Schulten, K. J.: 1993, Implementation of self-organizing networks for visuo-motor control of an industrial robot, IEEE Trans. Neural Networks 4(1), 86–95.

    Google Scholar 

  • Wu, C. M., Jiang, B. C., and Wu, C. H.: 1993, Using neural networks for robot positioning control, Robotics Comput.-Integrated Manufacturing 10(3), 153–168.

    Google Scholar 

  • Yang, S. X. and Meng, M.: 2001, Neural network approaches to dynamic collision-free trajectory generation, IEEE Trans. Systems Man Cybernet. B 31(3), 302–318.

    Google Scholar 

  • Zeller, M., Wallace, K. R., and Schulten, K.: 1995, Biological visuo-motor control of a pneumatic robot arm, in: Dagli, Akay, Chen, Fernandez, and Gosh (eds), Intelligent Engineering Systems through Artificial Neural Networks, ASME Press, New York, pp. 645–650.

    Google Scholar 

  • Zeller, M., Sharma, R., and Schulten, K.: 1996, Topology representing network for sensor-based robot motion planning, in: Proc. of the World Congress on Neural Networks (WCNN'96), San Diego, CA, pp. 100–103.

  • Zeller, M., Sharma, R., and Schulten, K.: 1997, Motion planning of a pneumatic robot using a neural network, IEEE Control Systems Mag. 17, 89–98.

    Google Scholar 

  • Zomaya, A. Y. and Nabhan, T. M.: 1994, Trends in neuroadaptive control for robot manipulators, in: R. Dorf and A. Kusiak (eds), Handbook of Design, Manufacturing and Automation, Wiley, New York, pp. 889–917.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de A. Barreto, G., Araújo, A.F.R. & Ritter, H.J. Self-Organizing Feature Maps for Modeling and Control of Robotic Manipulators. Journal of Intelligent and Robotic Systems 36, 407–450 (2003). https://doi.org/10.1023/A:1023641801514

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023641801514

Navigation