Skip to main content
Log in

Intracellular Visualization of Ampicillin-Loaded Nanoparticles in Peritoneal Macrophages Infected in Vitro with Salmonella typhimurium

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Intracellular targeting of ampicillin by means of polyisohexylcyanoacrylate (PIHCA) nanoparticles was studied in murine peritoneal macrophages infected with Salmonella typhimurium. The intracellular distribution of actively endocytosed nanoparticles was visualized by transmission electron microscopy and confocal microscopy. Nanoparticles were either isolated or closely associated with bacteria within phagosomes or phagolysosomes. Thus the potential of ampicillin-loaded nanoparticles .in targeting of intracellular bacteria is demonstrated. Consequently, ampicillin, which usually penetrates into cells at a low level, is directly carried in, when loaded on nanoparticles, and brought into contact with intracellular bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. Ishibashi and T. Arai. Specific inhibition of phagosome-lysosome fusion in murine macrophages mediated by Salmonella typhimurium infection. FEMS Microbiol. Immunol. 64:35–44 (1990).

    Google Scholar 

  2. N. A. Buchmeier and F. Heffron. Inhibition of macrophage phagosome-lysosome fusion by Salmonella typhimurium. Infect. Immun. 59:2232–2238 (1991).

    Google Scholar 

  3. M. E. W. Carrol, P. S. Jackett, V. R. Aber, and D. B. Lowrie. Phagolysosome formation, cyclic adenosine 3′:5′-monophosphate and the fate of Salmonella typhimurium within mouse peritoneal macrophages. J. Gen. Microbiol. 110:421–429 (1979).

    Google Scholar 

  4. I. A. J. M. Bakker-Woudenberg, P. de Bos, W. B. van Leeuwen, and M. F. Michel. Efficacy of ampicillin therapy in experimental listeriosis in mice with impaired T-cell-mediated immune response. Antimicrob. Agents Chemother. 19:76–81 (1981).

    Google Scholar 

  5. C. Renard, H. J. Vanderhaeghe, P. J. Claes, A. Zenebergh, and P. M. Tulkens. Influence of conversion of penicillin G into a basic derivative on its accumulation and subcellular localization in cultured macrophages. Antimicrob. Agents Chemother. 31:410–416 (1987).

    Google Scholar 

  6. P. Couvreur. Polyalkylcyanoacrylates as colloidal drugs carriers. In Crit. Rev. Ther. Drug Carrier Sys. 5:1–20 (1988).

    Google Scholar 

  7. P. Couvreur, B. Kante, and M. Roland. Les vecteurs lysosomotropes. J. Pharm. Belg. 35:51–60 (1980).

    Google Scholar 

  8. P. Couvreur, L. Grislain, V. Lenaerts, F. Brasseur, P. Guiot, and A. Biernacki. Biodegradable polymeric nanoparticles as drug carrier for antitumor agents. In P. Guiot and P. Couvreur, (eds.), Polymeric Nanoparticles and Microspheres, CRC Press, Boca Raton, FL, 1986, pp. 27–93.

    Google Scholar 

  9. C. R. Alving. Macrophages as targets for delivery of liposome-encapsulated antimicrobial agents. Adv. Drug Deliv. Rev. 2:107–128 (1988).

    Google Scholar 

  10. J. V. Desiderio and S. G. Campbell. Liposome-encapsulated cephalothin in the treatment of experimental murine salmonellosis. J. Reticuloendothel. Soc. 34:279–287 (1983).

    Google Scholar 

  11. C. E. Swenson, K. A. Stewart, J. L. Hammet, W. E. Fitzsimmons, and R. S. Ginsberg. Pharmacokinetics and in vivo activity of liposome-encapsulated gentamicin. Antimicrob. Agents Chemother. 34:235–240 (1990).

    Google Scholar 

  12. E. Fattal, J. Rojas, L. Roblot-Treupel, A. Andremont, and P. Couvreur. Ampicillin-loaded liposomes and nanoparticles: Comparison of drug loading, drug release and in vitro antimicrobial activity. J. Microencaps. 8:29–36 (1991).

    Google Scholar 

  13. E. Fattal, M. Youssef, P. Couvreur, and A. Andremont. Treatment of experimental salmonellosis in mice with ampicillinbound nanoparticles. Antimicrob. Agents Chemother. 33:1540–1543 (1989).

    Google Scholar 

  14. J. S. Weldon, J. F. Munnell, W. L. Hanson, and C. R. Alving. Liposomal chemotherapy in visceral leishmaniasis: An ultrastructural study of an intracellular pathway. Z. Parasitenkd. 69:415–424 (1983).

    Google Scholar 

  15. S. Majumdar, D. Flasher, D. S. Friend, P. Nassos, D. Yajko, W. K. Hadley, and N. Düzgünes. Efficacies of liposome-encapsulated streptomycin and ciprofloxacin against Mycobacterium avium-M. intracellulare complex infections in human peripheral monocyte/macrophages. Antimicrob. Agents Chemother. 36:2808–2815 (1992).

    Google Scholar 

  16. V. Guise, P. Jaffray, J. Delattre, F. Puisieux, M. Adolphe, and P. Couvreur. Comparative cell uptake of propidium iodide associated with liposomes or nanoparticles. Cell. Mol. Biol. 33:397–405 (1987).

    Google Scholar 

  17. P. Couvreur, M. Roland, and P. Speiser. Biodegradable submicroscopic particles containing a biologically active substance and compositions containing them. U.S. Patent No. 4.329.332 (1982).

  18. S. Henry-Michelland, M. J. Alonso, A. Andremont, P. Maincent, J. Sauzières, and P. Couvreur. Attachment of antibiotics to nanoparticles: Preparation, drug release and antimicrobial activity in vitro. Int. J. Pharm. 35:121–127 (1987).

    Google Scholar 

  19. T. B. Vree, Y. A. Hekster, A. M. Baars, and E. Van der Kleijn. Rapid determination of amoxycillin (Clamoxyl) and ampicillin (Penbritin) in body fluids of many by means of high-performance liquid chromatography. J. Chromatogr. 145:469–501 (1978).

    Google Scholar 

  20. O. Balland, H. Pinto-Alphandary, S. Pecquet, A. Andremont, and P. Couvreur. Intracellular uptake and activity of ampicillinloaded nanoparticles on murine macrophages infected by Salmonella typhimurium J. Antimicrob. Chemother. (in press).

  21. R. Bacallao, M. Bomsel, E. H. K. Stelzer, and J. De Mey. Guiding principles of specimen preservation for confocal fluorescence microscopy. In J. B. Pawley (ed.), Handbook of Biological Confocal Microscopy, Plenum Press, New York and London, 1990, pp. 197–205.

    Google Scholar 

  22. V. Lenaerts, P. Couvreur, D. Christiaens-Leyh, E. Joiris, M. Roland, B. Rollman, and P. Speiser. Degradation of poly(isobutylcyanoacrylate) nanoparticles. Biomaterials 5:65–68 (1984).

    Google Scholar 

  23. R. Whitehouse, J. C. Benichou, and A. Ryter. Procedure for longitudinal orientation of rodshaped bacteria and the production of a high cell density of procaryotic and eucaryotic cells in thin sections for electron microscopy. Biol. Cell. 30:155–178 (1977).

    Google Scholar 

  24. B. Seijo, E. Fattal, L. Roblot-Treupel, and P. Couvreur. Design of nanoparticles of less than 50 nm in diameter. Preparation, characterization and drug loading. Int. J. Pharm. 62:1–7 (1990).

    Google Scholar 

  25. S. J. Douglas, L. Illum, and S. S. Davis. Particle size and size distribution of poly (butyl 2-cyanoacrylate) nanoparticles. II. Influence of stabilizers. J. Colloid Interface Sci. 103:154–163 (1985).

    Google Scholar 

  26. J. L. Grangier, M. Puygrenier, J. C. Gautier, and P. Couvreur. Nanoparticles as carriers for growth hormone releasing factor. J. Control. Release 15:3–13 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto-Alphandary, H., Balland, O., Laurent, M. et al. Intracellular Visualization of Ampicillin-Loaded Nanoparticles in Peritoneal Macrophages Infected in Vitro with Salmonella typhimurium . Pharm Res 11, 38–46 (1994). https://doi.org/10.1023/A:1018985308984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018985308984

Navigation