Skip to main content
Log in

Polyglycolide: degradation and drug release. Part I: Changes in morphology during degradation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The changing morphology of quenched polyglycolide (PGA) is investigated during hydrolytic degradation in phosphate buffered saline at pH 7.4. Analysis techniques include small and wide-angle X-ray scattering (SAXS and WAXS), mass measurements, DSC, pH measurement and UV-spectrophotometry. It is postulated that the degradation process can be separated into four distinct stages. In stage I, water diffuses quickly into the sample. During stage II, the polymer crystallizes by insertion crystallization, whilst the molecular weight gradually falls. This stage is characterized by a dramatic fall in the long period together with an increase in the crystallinity, minimal mass loss and minimal water uptake. At the onset of stage III, at around 10 days, a critical molecular weight is reached. Degradation products are now small enough to diffuse from the surface of the sample which begins to swell, water diffuses into the space created, and the crystals are freed from constraint. A co-operation between degradation products diffusing out of the sample and the water diffusing in causes “reaction–erosion” fronts to develop inside the sample. Ahead of these fronts, the trapped acidic degradation products remain to catalyze the hydrolysis. Stage III is characterized by swelling and an increase in the long period, together with mass loss and further water uptake. It is postulated that these reaction–erosion fronts move through the sample and meet in the centre at the beginning of stage IV, at which point the degradation again becomes homogeneous throughout the sample. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Li, H. Garreau and M. Vert, J. Mater. Sci. (Mater. in Med.) 1 (1990) 123.

    Google Scholar 

  2. S. M. Li, H. Garreau and M. Vert, J. Mater. Sci. (Mater. In Med.) 1 (1990) 131.

    Google Scholar 

  3. D. W Grijmpa, A. J Nijenhuis and A. J. Pennings, Polymer 31 (1990) 2201.

    Google Scholar 

  4. C. C. Chu, J. Biomed. Mat. Res. 1981 15 (1981) 795.

    Google Scholar 

  5. D. K. Gilding and A. M. Reed, Polymer 20 (1979) 1459.

    Google Scholar 

  6. S. M. Li, H. Garreau and M. Vert, J. Mater. Sci. (Mater. in Med.) 1 (1990) 198.

    Google Scholar 

  7. R. J. Fredericks, A. J. Melveger and L. J. Dolegiewitz, J. Polym. Sci. 22 (1984) 57.

    Google Scholar 

  8. J. W. Leenslag, A. J. Pennings, R. R. M. Bos, F. R. Rosema and G. Boering Biomaterials 8 (1987) 311.

    Google Scholar 

  9. C. C. Chu, J. Appl. Polym. Sci. 26 (1981) 1727.

    Google Scholar 

  10. R. M. Ginde and R. K. Gupta, J. Appl. Polym. Sci. 33 (1987) 2411.

    Google Scholar 

  11. A. Browning and C. C. Chu, J. Biomed. Mat. Res. 20 (1986) 613.

    Google Scholar 

  12. A. Browning and C. C. Chu, J. Biomed. Mat. Res. 20 (1988) 699.

    Google Scholar 

  13. R. A. Miller, J. M. Brady and D. E. Cutright, J. Biomed. Mat. Res. 11 (1977) 711.

    Google Scholar 

  14. P. Tormala, H. M. Mikkola, J. Vasenius, S. Vainionpaa and P. Rokkanen, Die Angewandte Makromolekulare Chemie 185 (1991) 293.

    Google Scholar 

  15. G. E. Visscher, J. E. Pearson, J. W. Fong, G. J. Argentieri and R. L. Robison, J. Biomed. Mat. Res. 22 (1988) 733.

    Google Scholar 

  16. M. Vert, S. M. Li, G. Splenlehauer and P. Guerin, J. Mat. Sci.: Mater. in Medicine 3 (1992) 432.

    Google Scholar 

  17. D. F. Williams and E. Mort, J. Biomed. Mat. Res. 14 (1980) 329.

    Google Scholar 

  18. R. A. Kenley, M. O. Lee, T. R. Mahoney and L. M. Sanders, Macromolecules 20 (1987) 2398.

    Google Scholar 

  19. K. Makino, H. Ohshima and T. Kondo, J. Microencapsulation 3 (1986) 203.

    Google Scholar 

  20. G. E. Zaikov JMS-REV. Macromol. Chem. Phys. C25 (1985) 551.

    Google Scholar 

  21. C. C. Chu, J. Biomed. Mat. Res. 15 (1981) 19.

    Google Scholar 

  22. E. A. Schmitt, D. R. Flanagan and R. J. Linhardt, Macromolecules 27 (1994) 743.

    Google Scholar 

  23. L. Pratt, C. Chu, J. Auer, A. Chu, J. Kim, J. A. Zollweg and C. C. Chu, J. Polymer Science: Part A: Polymer Chemistry 31 (1993) 1759.

    Google Scholar 

  24. A. Brunner, K. Mader and A. Gopferich, Int'l. Symp. Control. Rel. Bioact. Mater. 1998.

  25. K. Fu, D. W. Pack, A. Laverdiere, S. Son and R. Langer Int'l Symp. Control. Rel. Bioact. Mater. 1998.

  26. A. M. Reed and D. K. Gilding, Polymer 22 (1981) 494.

    Google Scholar 

  27. C. C. Chu and M. Louie, J. Appl. Polym. Sci. 30 (1985) 3133.

    Google Scholar 

  28. J. D. Bernal and R. H. Fowler Journal of Chemical Physics 1 (1933) 515.

    Google Scholar 

  29. E. King, S. Robinson and R. E. Cameron, Polymer International 48 (1999) 15.

    Google Scholar 

  30. I. Grizzi, H. Garreau, S. Li and M. Vert, Biomaterials 16 (1995) 305.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth E. Cameron.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hurrell, S., Cameron, R.E. Polyglycolide: degradation and drug release. Part I: Changes in morphology during degradation. Journal of Materials Science: Materials in Medicine 12, 811–816 (2001). https://doi.org/10.1023/A:1017925019985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017925019985

Keywords

Navigation