Skip to main content

Advertisement

Log in

The dormant in vivo phenotype of early stage primary human melanoma: termination by overexpression of vascular endothelial growth factor

  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Early stage primary human cutaneous melanoma is known to remain relatively avascular and dormant for up to a decade, after which it may give rise to more rapidly growing, vascular and metastatically-competent primary tumor. Clinical dormancy of early stage human melanomas can be recapitulated experimentally by injection of cell lines established from such tumors into nude mice. For example, WM1341B cells, which were isolated from a thin vertical growth phase (VGP) human melanoma, are non-tumorigenic in nude mice even though some of the cells remain viable for at least three weeks at the site of orthotopic injection. These cells produce little or no vascular endothelial growth factor/vascular permeability factor (VEGF/VPF), a potent stimulator of angiogenesis. In order to determine whether their in vivo dormant behaviour may therefore be related to an inability to induce tumor angiogenesis, subpopulations of WM1341B cells were engineered to constitutively overexpress the VEGF/VPF121 isoform. This apparently single modification was sufficient to induce overt and progressively growing tumors by several independent VEGF/VPF121 producing clones, which could be largely blocked by systemic treatment of mice with a monoclonal anti-VEGF neutralizing antibody (A 4.6.1). No evidence for an autocrine mechanism of growth stimulation by VEGF was found. Taken together, these results support the notion that defective angiogenesis may, at least in part, account for dormant phenotype of some early stage primary melanomas. Since the induction of an overt tumorigenic phenotype in several VEGF/VPF transfected WM1341B clones appears to depend exclusively on their expression of VEGF/VPF, such sublines should be useful for screening the activity of known or potential VEGF/VPF ligand or VEGF/VPF receptor antagonists in an in vivo context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herlyn M, Balaban G, Bennicelli J, et al.Primary melanoma cells of the vertical growth phase: Similarities to metastatic cells. J Natl Cancer Inst1985; 74, 283–289.

    PubMed  CAS  Google Scholar 

  2. Herlyn M. Human melanoma: development and progression. Cancer Metastasis Rev1990; 9, 101–112.

    Article  PubMed  CAS  Google Scholar 

  3. Clark W. Tumor progression and the nature of cancer. Br J Cancer1991; 64, 631–644.

    PubMed  CAS  Google Scholar 

  4. Rodeck U, Herlyn M, Menssen HD, et al.Metastatic but not primary melanoma cell lines grow in vitro independently of exogenous growth factors. Int J Cancer1987; 40, 687–690.

    PubMed  CAS  Google Scholar 

  5. Kath R, Rodeck U, Parmiter A, Herlyn M. Growth factor independence in vitro of primary melanoma cells from advanced but not early or intermediate lesions. Cancer Ther Control1991; 1, 179–191.

    Google Scholar 

  6. Kobayashi H, Man S, MacDougall JR, et al.Variant sublines of early-stage human melanomas selected for tumorigenicity in nude mice express a multicytokine resistant phenotype. Am J Pathol1994; 144, 776–786.

    PubMed  CAS  Google Scholar 

  7. Bani MR, Rak J, Adachi D, et al.Multiple features of advanced melanoma recapitulated in tumorigenic variants of early stage (radial growth phase) human melanoma cell lines: evidence for a dominant phenotype. Cancer Res1996; 56, 3075–3086.

    PubMed  CAS  Google Scholar 

  8. Fridman R, Giaccone G, Kanemoto T, et al.Reconstituted basement membrane (matrigel) and laminin can enhance the tumorigenicity and the drug resistance of small cell lung cancer cell lines. Proc Natl Acad Sci (USA)1990; 87, 6698–6702.

    Article  CAS  Google Scholar 

  9. Fridman R, Kibbey MC, Royce LS, et al.Enhanced tumor growth of both primary and established human and murine tumor cells in athymic mice after coinjection with matrigel. J Natl Cancer Inst1991; 83, 769–774.

    PubMed  CAS  Google Scholar 

  10. Mehta RR, Graves JM, Hart GD, et al.Growth and metastasis of human breast carcinomas with Matrigel in athymic mice. Breast Cancer Res Treat1993; 25, 65–71.

    Article  PubMed  CAS  Google Scholar 

  11. Pretlow TG, Delmoro CM, Dilley GG, et al.Transplantation of human prostatic carcinoma into nude mice in matrigel. Cancer Res1991; 51, 3814–3817.

    PubMed  CAS  Google Scholar 

  12. Bonfil RD, Vinyals A, Bustuoabad OD, et al.Stimulation of angiogenesis as an explanation of Matrigelenhanced tumorigenicity. Int J Cancer1994; 58, 233–239.

    PubMed  CAS  Google Scholar 

  13. Vukicevic S, Kleinman HK, Luyten FP, et al.Identi fication of Multiple active growth factors in basement membrane matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res1992; 202, 1–8.

    Article  PubMed  CAS  Google Scholar 

  14. Klagsbrun M, Soker S. VEGF/VPF: the angiogenesis factor found? Curr Biol1993; 3, 699–702.

    Article  PubMed  CAS  Google Scholar 

  15. Thomas KA. Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem1996; 271, 603–606.

    PubMed  CAS  Google Scholar 

  16. Dvorak HF, Brown LF, Detmar M, et al.Review: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol1995; 146, 1029–1039.

    PubMed  CAS  Google Scholar 

  17. Vinores SA, Kuchle M, Mahlow J, et al.Blood-ocular barrier breakdown in eyes with ocular melanoma. A potential role for vascular endothelial growth factor/ vascular permeability factor. Am J Pathol1995; 147, 1289–1297.

    PubMed  CAS  Google Scholar 

  18. Erhard H, Rietveld FJR, van Altena MC, et al.Transition of horizontal to vertical growth phase melanoma is accompanied by induction of vascular endothelial growth factor expression and angiogenesis. Melanoma Res1998; 7, S19–S26.

    Google Scholar 

  19. Weidner N. Curent pathologic methods for measuring intratumoral microvessel density within breast carcinoma and other solid tumors. Breast Cancer Res Treat1995; 36, 169–180.

    Article  PubMed  CAS  Google Scholar 

  20. Stein I, Neeman M, Shweiki D, et al.Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol1995; 15, 5363–5368.

    PubMed  CAS  Google Scholar 

  21. Ikeda E, Achen MG, Breier G, et al.Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem1995; 270, 19761–19766.

    Article  PubMed  CAS  Google Scholar 

  22. Shweiki D, Itin A, Soffer D, et al.Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initated angiogenesis. Nature1992; 359, 843–845.

    Article  PubMed  CAS  Google Scholar 

  23. Potgens AJG, Lubsen NH, van Altena MC, et al.Vascular permeability factor expression influences tumor angiogenesis in human melanoma lines xenografted to nude mice. Am J Pathol1995; 146, 197–209.

    PubMed  CAS  Google Scholar 

  24. Claffey KP, Brown LF, del Aguila LF, et al.Expression of vascular permeability factor/vascular endothelial growth factor melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res1996; 56, 172–181.

    PubMed  CAS  Google Scholar 

  25. Ferrara N, Winer J, Burton T, et al.Expression of vascular endothelial growth factor does not promote transformation but confers a growth advantage in vivo to Chinese hamster ovary cells. J Clin Invest1993; 91, 160–170.

    PubMed  CAS  Google Scholar 

  26. Cheng SY, Huang HJ, Nagane M, et al.Suppression of glioblastoma angiogenicity and tumorigenicity by inhibition of endogenous expression of vascular endothelial growth factor. Proc Natl Acad Sci USA1996; 93, 8502–8507.

    Article  PubMed  CAS  Google Scholar 

  27. Zhang H-T, Craft P, Scott PAE, et al.Enhancement of tumor growth and vascular density by transfection of vascular endothelial cell growth factor into MCF-7 human breast carcinoma cells. J Natl Cancer Inst1995; 87, 213

    PubMed  CAS  Google Scholar 

  28. Minchenko A, Salceda S, Bauer T, et al.Hypoxia regulatory elements of the human vascular endothelial growth factor gene. Cell Mol Biol Res1994; 40, 35–39.

    PubMed  CAS  Google Scholar 

  29. Kim KJ, Li B, Winer J, et al.Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature1993; 362, 841–844.

    Article  PubMed  CAS  Google Scholar 

  30. Thomson W, Mackie RM. Comparison of five antimelanoma antibodies for identification of melanocytic cells on tissue sections in routine dermatopathology. J Am Acad Dermatol1989; 21, 1280–1284.

    Article  PubMed  CAS  Google Scholar 

  31. Holmgren L, O'Reilly MS, Folkman J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine1995; 1, 149–153.

    Article  PubMed  CAS  Google Scholar 

  32. Kerbel RS, Man MS, Dexter D. A model of human cancer metastasis: extensive spontaneous and artificial metastasis of a human pigmented and derived variant sublines in nude mice. J Natl Cancer Inst1984; 72, 93–108.

    PubMed  CAS  Google Scholar 

  33. Kerbel RS, Man MS. Single-step selection of unique human melanoma variants displaying unusually aggressive metastatic behavior in nude athymic mice. Invasion & Metastasis1984; 4, 31–43.

    Google Scholar 

  34. Gitay-Goren H, Halaban R, Neufeld G. Human melanoma cells but not normal melanocytes express vascular endothelial growth factor receptors. Biochem Biophys Res Commun1993; 190, 702–709.

    Article  PubMed  CAS  Google Scholar 

  35. Potgens AJG, van Altena MC, Lubsen NH, et al.Analysis of the tumor vasculature and metastatic behavior of xenografts of human melanoma cell lines transfected with vascular permeability factor. Am J Pathol1996; 148, 1203–1217.

    PubMed  CAS  Google Scholar 

  36. Folkman J. What is the evidence that tumors are angiogenesis-dependent? J Natl Cancer Inst1990; 82, 4–6.

    PubMed  CAS  Google Scholar 

  37. Czubayko F, Schulte AM, Berchem GJ, et al.Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc Natl Acad Sci (USA)1996; 93, 14753–14758.

    Article  CAS  Google Scholar 

  38. Singh RK, Gutman M, Radinsky R, et al.Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice. Cancer Res1994; 54, 3242–3247.

    PubMed  CAS  Google Scholar 

  39. Rodeck U, Becker D, Herlyn M, et al.Basic fibroblast growth factor in human melanomas. Cancer Cells1991; 3, 308–311.

    PubMed  CAS  Google Scholar 

  40. Wang Y, Becker D. Antisense targeting of basic fi-broblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth [In Process Citation]. Nat Med1997; 3, 887–893.

    Article  PubMed  CAS  Google Scholar 

  41. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res1996; 69, 135–174.

    PubMed  CAS  Google Scholar 

  42. Rak J, Filmus J, Finkenzeller G, et al.Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev1995; 14, 263–277.

    Article  PubMed  CAS  Google Scholar 

  43. Rak J, Mitsuhashi Y, Bayko L, et al.Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res1995; 55, 4575–4580.

    PubMed  CAS  Google Scholar 

  44. Volpert OV, Dameron KM, Bouck N, et al.Sequential development of an angiogenic phenotype by human fibroblasts progressing to tumorigenicity. Oncogene1997; 14, 1495–1502.

    Article  PubMed  CAS  Google Scholar 

  45. Mazure NM, Chen EY, Yeh P, et al.Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res1996; 56, 3436–3440.

    PubMed  CAS  Google Scholar 

  46. Arbiser JL, Moses MA, Fernandez CA, et al.Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci (USA)1997; 94, 861–866.

    Article  CAS  Google Scholar 

  47. Viloria-Petit AM, Rak J, Hung M-C, et al.Neutralizing antibodies against EGF and ErbB-2/neu receptor tyrosine kinases down-regulate VEGF production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am J Pathol1997; 151, 1523–1530.

    Google Scholar 

  48. Cascinelli N, Bufalino R, Morabito A, et al.Results of an adjuvant interferon study in WHO melanoma programme. Lancet1994; 343, 913–914.

    Article  PubMed  CAS  Google Scholar 

  49. Kirkwood JM, Strawderman MH, Ernstoff MS, et al.Adjuvant therapy of high-risk resected cutaneous melanoma: the eastern cooperative oncology group trial 1684. J Clin Oncol1995.

  50. Creagan ET, Dalton RJ, Ahmann DL, et al.Randomized surgical adjuvant clinical trial of recombinant interferon alfa-2a in selected patients with malignant melanoma. J Clin Oncol1995; 13, 2776–2783.

    PubMed  CAS  Google Scholar 

  51. Schinkel AH, Wagenaar E, Mol CAAM, et al.Pglycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest1996; 97, 2517–2524.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Kerbel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayko, L., Rak, J., Man, S. et al. The dormant in vivo phenotype of early stage primary human melanoma: termination by overexpression of vascular endothelial growth factor. Angiogenesis 2, 203–217 (1998). https://doi.org/10.1023/A:1009275307663

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009275307663

Navigation