Skip to main content
Log in

Removal of Lead from Contaminated Soils by Typha Angustifolia

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A greenhouse study was demonstrated for removal of lead (Pb) from contaminated soil by the narrow — leaved cattail, Typha angustifolia. The plants were grown in sandy loam soil containing various concentrations of Pb(NO3)2 (53.3, 106.7, 160, 213.3, and 266.7 mg Pb kg-1 soil). Most lead was accumulated in roots and then transported to leaves. In soil contaminated with 266.7 mg kg-1 of lead, the plants accumulated 7492.6 mg Pb kg-1 dry weight in the roots and 167 mg Pb kg-1 dry weight in the leaves. Yet, no growth retardation from lead was detected. T. angustifolia has high potential as a plant to clean up lead contaminated soil due to its vigorous growth, high biomass productivity, and because it is a perennial in nature. Further work is required to study on the iron plaque formation and its role in metal immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Alloway, B. J.: 1995, ‘Heavy Metals in Soils’, in B. J. Alloway (ed.), Heavy Metals in Soils, Blackie, Glasgow, U.K., pp. 193.

    Google Scholar 

  • Baker, A. J. M.: 1981, ‘Accumulators and excluders-strategies in the responses of plants to heavy metals’, J. Plant Nutr. 3, 643–654.

    CAS  Google Scholar 

  • Barry, S. A. and Clark, S. C.: 1978, ‘Problems of interpreting the relationship between the amounts of lead and zinc in plants and soil on metalliferous wastes’, New Phytol. 81, 773–783.

    CAS  Google Scholar 

  • Batty, L. C., Baker, A. J. M. and Wheeler, B. D.: 2002, ‘Aluminium and phosphate uptake by Phragmites australis: The role of Fe, Mn and Al root plaques’, Ann. Bot. 89, 443–449.

    Article  CAS  Google Scholar 

  • Batty, L. C.: 2003, ‘Wetland plants-More than just a pretty face?’, Land Contam. Reclam. 11, 173–180.

    Google Scholar 

  • Bazzaz, F. A., Carlson, R.W. and Rolfe, G. L.: 1975, ‘Inhibition of corn and sunflower photosynthesis by lead’, Physiol. Plant. 34, 326–329.

    CAS  Google Scholar 

  • Berry,W. L.: 1986, ‘Plant Factors in Influencing the Use of Plant Analysis as a Tool for Biogeochemical Prospecting’, in D. Carlisle, W. L. Berry, I. R. Kaplan and J. R. Watterson (eds), Mineral Exploration: Biological Systems and Organic Matter, Rubey Vol. 5, Prentice-Hall, Englewood Cliffs, NJ, U.S.A., pp. 13–32.

    Google Scholar 

  • Blaylock, M. J., Salt, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D. and Raskin, I.: 1997, ‘Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents’, Environ. Sci. Technol. 31, 860–865.

    Article  Google Scholar 

  • Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S. and Baker, A. J. M.: 1997, ‘Phytoremediation of soil metals’, Curr. Opinion Biotechnol. 8, 279–284.

    Article  CAS  Google Scholar 

  • Crowder, A. A., Macfie, S. M., Conlin, T., St-Cyr, L. and Greipsson, S.: 1987, ‘Iron Hydroxide Plaques on Roots of Wetland Plants’, in S. E. Lindberg and T. C. Hutchinson (eds), Proceedings of the International Conference: Heavy Metals in the Environment, New Orleans, U.S.A., pp. 404–406.

  • Deram, A. and Petit, D.: 1997, ‘Ecology of bioaccumulation in Arrhenatherum elatius L. (Poaceae) populations — Applications of phytoremediation of zinc, lead, and cadmium contaminated soils’, J. Exp. Bot. 48(Spec. Suppl.), 98.

    Google Scholar 

  • Fernandes, J. C. and Henriques, F. S.: 1990, ‘Metal levels in soils and attail (Typha latifolia L.) plants in a pyrites mine area at Lousal, Portugal’, Internat. J. Environ. Stud. 36, 205–210.

    CAS  Google Scholar 

  • Greipsson, S.: 1994, ‘Effects of iron plaque on roots of rice on growth and metal concentration of seeds and plant tissues when cultivated in excess copper’, Communicat. Soil Sci. Plant Analysis 25, 2761–2769.

    CAS  Google Scholar 

  • Greipsson, S. and Crowder, A. A.: 1992, ‘Amelioration of copper and nickel toxicity by iron plaque on roots of rice (Oryza sativa)’, Can. J. Bot. 70, 824–830.

    CAS  Google Scholar 

  • Hansel, C. M., Fendorf, S., Sutton, S. and Newville, M.: 2001, ‘Characterisation of Fe plaque and associated metals on the roots of mine-waste impacted plants’, Environ. Sci. Technol. 35, 3863–3868.

    Article  CAS  Google Scholar 

  • Harrison, R. M. and Laxen, D. P. H.: 1981, Lead Pollution Causes and Control, Chapman and Hall, London, pp. 55–69.

    Google Scholar 

  • Huang, J. W., Chen, J., Berti, W. R. and Cunningham, S. D.: 1997, ‘Phytoremediation of lead-contaminated soil: Role of synthetic chelates in lead phytoextraction’, Environ. Sci. Technol. 31, 800–805.

    CAS  Google Scholar 

  • Jin-Hong, Q., Adel, Z., Yong-Liang, Z., Yu, M. and Norman, T.: 1999, ‘Phytoaccumulation of trace elements by wetland plants: Uptake and accumulation of ten trace elements by twelve plant species’, J. Environ. Qual. 28, 1448–1455.

    Google Scholar 

  • Johnston, W. R. and Proctor, J.: 1977, ‘A comparative study of metal levels in plants from two contrasting lead-mine sites’, Plant Soil 46, 251–257.

    CAS  Google Scholar 

  • Kabata-Pendias, A. and Pendias, H.: 1992, Trace Elements in Soils and Plants, CRC Press, Boca Raton, FL, U.S.A., pp. 365.

    Google Scholar 

  • Lab Procedures: 1970, Soil Testing and Plant Analysis Laboratory, Co-operative Extension Service, Athens, GA.

  • Lan, C., Chen, G., Li, L. and Wong, M. H.: 1992, ‘Use of cattails in treating wastewater from a lead/zinc mine’, Environ. Manage. 16, 75–80.

    Google Scholar 

  • Malone, C., Koeppe, D. E. and Miller, R. J.: 1974, ‘Localization of lead accumulated by corn plants’, Plant Physiol. 53, 388–394.

    CAS  Google Scholar 

  • McBride, M. B.: 1994, Environmental Chemistry of Soils, Oxford University Press, New York, U.S.A.

    Google Scholar 

  • McNaughton, S. J., Folsom, T. C., Lee, T., Park, F., Price, C., Roeder, D., Schmitz, J. and Stokwell, C.: 1974, ‘Heavy metal tolerance in Typha latifolia without the evolution of tolerant races’, Ecology 55, 1163–1165.

    CAS  Google Scholar 

  • Muramoto, S. and Oki, Y.: 1983, ‘Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes)’, Bull. Environ. Contam. Toxicol. 30, 170–177.

    Article  CAS  Google Scholar 

  • National Soil Survey Center: 1996, ‘Soil Survey Laboratory Method Manual’, Soil Survey Investigation Report No. 42, Version 3, National Resources Conservation Service, United States Department of Agriculture, pp. 693.

  • Neubauer, S. C., Emerson, D. and Megonigal, J. P.: 2002, ‘Life at the energetic edge: Kinetics of circum-neutral iron oxydation by lithotrophic iron-oxidising bacteria isolated from the wetland plant rhizosphere’, Appl. Environ. Microb. 68, 3988–3995.

    Article  CAS  Google Scholar 

  • Otte, M. L., Buijs, E. P., Riemer, L., Rozema, J. and Broekman, R. A.: 1987, ‘The Iron Plaque on the Roots of Saltmarsh Plants: A Barrier to Heavy Metal Uptake?’, in S. E. Lindberg and T. C. Hutchinson (eds), Proceedings of the International Conference HeavyMetals in the Environment, New Orleans, U.S.A., pp. 407–409.

  • Otte, M. L., Rozema, J., Koster, L., Haarsma, M. S. and Broekman, R. A.: 1989, ‘Iron plaque on roots of Aster tripolium L.: Interaction with zinc uptake’, New Phytol. 111, 309–317.

    CAS  Google Scholar 

  • Otte, M. L.: 1991, ‘Ecological Responses to Environmental Stresses’, Ph.D. Thesis, Vrije Universiteit, Amsterdam, The Netherlands.

    Google Scholar 

  • Page, A. L., Miller, R. H. and Keeney, D. R.: 1982, Methods of Soil Analysis: Part 2, Chemical and Microbiological Properties, 2nd ed., Agronomy Monograph 9, American Society of Agronomy, Madison, WI, U.S.A., pp. 159–165.

    Google Scholar 

  • Raskin, I. and Ensley, B. D.: 2000, Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment, John Wiley & Sons, New York, pp. 304.

    Google Scholar 

  • Reeves, R. D. and Brooks, R. R.: 1983a, ‘Hyperaccumulation of lead and zinc by two metallophytes from a mining area of central Europe’, Environ. Pollut. 31, 277–287.

    CAS  Google Scholar 

  • Reeves, R. D. and Brooks, R. R.: 1983b, ‘European species of Thlaspi L. (Cruciferae) as indicators of nickel and zinc’, J. Geochem. Explor. 18, 275–283.

    Article  CAS  Google Scholar 

  • Salt, D. E., Blaylock, M., Kumar, P. B. A. N., Dushenkov, V., Ensley, B. D., Chet, I. and Raskin, I.: 1995, ‘Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants’, J. Biotechnol. 13, 468–474.

    CAS  Google Scholar 

  • Salt, D. E., Smith, R. D. and Raskin, I.: 1998, ‘Phytoremediation’, Ann. Rev. Plant Physiol. Plant Mole. Biol. 49, 643–668.

    CAS  Google Scholar 

  • Sharma, S. S. and Gaur, J. P.: 1995, ‘Potential of Lemna polyrhiza for removal of heavy metals’, Ecol. Eng. 4, 37–43.

    Article  Google Scholar 

  • St-Cyr, L. and Crowder, A. A.: 1990, ‘Manganess and copper in the root plaque of Phragmites australis (Cav.) Trin. Ex Steudel’, Soil Sci. 149, 191–198.

    CAS  Google Scholar 

  • St-Cyr, L., Fortin, D. and Campbell, P. G. C.: 1993, ‘Microscopic observations of the iron plaque of a submerged aquatic plant (Vallisneria americana Michx.) Aqua. Bot. 46, 155–167.

    CAS  Google Scholar 

  • Taylor, G. J. and Crowder, A. A.: 1983a, ‘Uptake and accumulation of heavy metals by Typha latifolia in wetlands of the Sudbury, Ontario Region’, Can. J. Bot. 61, 63–73.

    CAS  Google Scholar 

  • Taylor, G. J. and Crowder, A. A.: 1983b, ‘Uptake and accumulation of copper, nickel, and iron by Typha latifolia grown in solution culture’, Can. J. Bot. 61, 1825–1830.

    CAS  Google Scholar 

  • Taylor, G. J., Crowder, A. A. and Rodden R.: 1984, ‘Formation and morphology of an iron plaque on the roots of Typha latifolia L. grown in solution culture’, Amer. J. Bot. 71, 666–675.

    CAS  Google Scholar 

  • Walkley, A. and Black, C. A.: 1934, ‘An examination of degradation methods for determining soil organic matter: A pproposed modification of the chromic acid titration method’, Soil Sci. 37, 29–35.

    CAS  Google Scholar 

  • Wang, T. and Peverly, J. H.: 1996, ‘Oxidation states and fractionation of plaque iron on root of common reeds’, Soil Sci. Soc. Amer. J. 60, 323–329.

    CAS  Google Scholar 

  • Ye, Z. H., Baker, A. J. M., Wong, M. H. and Willis, A. J.: 1997, ‘Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latofolia’, New Phytol. 136, 469–480.

    CAS  Google Scholar 

  • Ye, Z. H., Baker, A. J. M., Wong, M. H. and Willis, A. J.: 1998, ‘Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface’, Aqua. Bot. 61, 55–67.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Pokethitiyook.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panich-Pat, T., Pokethitiyook, P., Kruatrachue, M. et al. Removal of Lead from Contaminated Soils by Typha Angustifolia . Water, Air, & Soil Pollution 155, 159–171 (2004). https://doi.org/10.1023/B:WATE.0000026523.96599.6b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:WATE.0000026523.96599.6b

Navigation