Skip to main content
Log in

Temperature Modeling in a Total Knee Joint Replacement Using Patient-Specific Kinematics

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

This paper reports the implementation of a computer modeling approach that uses fluoroscopically measured motions of total knee replacements as inputs and predicts patient-specific implant temperature rises using computationally efficient dynamic contact and thermal analyses. The multibody dynamic simulations of two activities (gait and stair) were generated from the fluoroscopic data to predict contact pressure and slip velocity time histories for individual elements on the tibial insert surface. These time histories were used in a computational thermal analysis to predict average steady-state temperature rise due to frictional heating on each element. For the standard condition, which assumes an ultra-high molecular weight polyethylene (UHMWPE) tibial component and cobalt-chrome femoral component, 1 Hz activity frequency, friction coefficient of μ = 0.06, and convective heat transfer coefficient of h = 30 (W/(m2·K)), the predicted maximum temperature rise on the medial compartment was 9.1 and 14 °C for continuous activities of gait and stair respectively. The sensitivity of the temperature rise to activity rate, heat partitioning to the femoral component, and convective heat transfer coefficient was explored. The model is extremely sensitive to the thermal properties of the femoral component and predicts order of magnitude changes in contact temperature with order of magnitude changes in thermal conductivity. A survey of thermal conductivity for current and proposed scratch resistant femoral component implant materials shows variations greater than an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Bergmann, F. Graichen, A. Rohlmann, N. Verdonschot and G. H. van Lenthe, J. Biomech. 34 (2001a) 421.

    PubMed  Google Scholar 

  2. Y. S. Liao, Z. Lu, P. D. Benya and H. A. McKellop, in: Proceedings of the 48th Annual Meeting of the Orthopaedic Research Society, February, plDallas, Texas (2002).

  3. C. C. Hu, J. J. Liau, C. Y. Lung, C. H. Huang and C. K. Cheng, Mat. Sci. Eng. C17 (2001) 11

    Google Scholar 

  4. G. Bergmann, F. Graichen, A. Rohlmann, N. Verdonschot, and G. H. van Lenthe, J. Biomech. 34 (2001b) 429.

    PubMed  Google Scholar 

  5. J. A. Davidson, G. Schwartz and G. Lynch, J. Biomed. Mat. Res. 21 (1987) 261.

    Google Scholar 

  6. J. A. Davidson, G. Schwartz and G. Lynch, J. Biomed. Mat. Res. 22 (1988) 69.

    Google Scholar 

  7. M. K. Harman, S. A. Banks and W. A. Hodge, Clin. Orthopaedics Rel. Res. 392 (2001).

  8. J. N. Insall, L. D. Dorr, R. D. Scott and W. N. Scott, Clin. Orthopaedics Rel. Res. 248 (1989) 13.

    Google Scholar 

  9. S. A. Banks, Ph. D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA. (1992).

  10. S. A. Banks and W. A. Hodge, IEEE Trans. Bio. Eng. 43 (1996) 638.

    Google Scholar 

  11. S. A. Banks, G. D. Markovich and W. A. Hodge, J. Arthroplasty 12 (1997) 297.

    PubMed  Google Scholar 

  12. S. A. Banks, G. D. Markovich and W. A. Hodge, Am. J. Knee Surg. 10 (1997) 261.

    PubMed  Google Scholar 

  13. B. J. Fregly, Y. Bei, and M. E. Sylvester, J. Biomech. (accepted) (2003).

  14. K. L. Johnson, Contact Mechanics (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  15. K. N. An, S. Himenso, H. Tsumura, T. Kawai and E. Y. S. Chao, J. Biomech. 23 (1990) 1013.

    PubMed  Google Scholar 

  16. L. Blankevoort, J. H. Kuiper, R. Huiskes and H. J. Grootenboer, J. Biomech. 24 (1991) 1019.

    PubMed  Google Scholar 

  17. T.-W. Lu, S. J. G. Taylor, J. J. O'Connor and P. S. Walker, J. Biomechanics 30 (1997) 1101.

    Google Scholar 

  18. F. Johnson, P. Scarrow, and W. Waugh, Med. Biolog. Eng. Comp. 19 (1981) 237.

    Google Scholar 

  19. O. D. Schipplein and T. P. Andriacchi, J. Orthopaedic Res. 9 (1991) 113.

    Google Scholar 

  20. D. E. Hurwitz, D. R. Sumer, T. P. Andriacchi and D. A. Sugar, J. Biomech. 31 (1998) 423.

    PubMed  Google Scholar 

  21. S. A. Banks, J. C. Otis, S. I. Backus, G. L. Furman and S. B. Haas, in: Proceedings of the 67th Annual Meeting of the American Academy of Orthopaedic Surgeons, March, Orlando, Florida (2000).

  22. S. J. G. Taylor, P. S. Walker, J. S. Perry, S. R. Cannon and R. Woledge, J. Arthroplasty 13 (1998) 428.

    PubMed  Google Scholar 

  23. S. J. G. Taylor and P. S. Walker, J. Biomech. 34 (2001) 839.

    PubMed  Google Scholar 

  24. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959).

    Google Scholar 

  25. J. A. Williams, Engineering Tribology (Oxford University Press, Oxford, 1998).

    Google Scholar 

  26. B. Bhushan, Principles and Applications of Tribology (John Wiley and Sons, New York, 1999).

    Google Scholar 

  27. S. M. Kurtz, C. W. Jewett, J. S. Bergström, J. R. Foulds and A. A. Edidin, Biomaterials 23 (2002) 1907.

    PubMed  Google Scholar 

  28. D. L. Bartel, J. J. Rawlinson, A. H. Burstein, C. S. Ranawat and W. F. Flynn, Clin. Orthopaedics Rel. Res. 317 (1995) 76.

    Google Scholar 

  29. S. Kakaç and Y. Yener, Convective Heat Transfer (CRC Press, Boca Raton, Florida, 1995).

    Google Scholar 

  30. R. M. Hall and A. Unsworth, Biomaterials 1997 (1997) 1017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.G. Sawyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawyer, W., Hamilton, M., Fregly, B. et al. Temperature Modeling in a Total Knee Joint Replacement Using Patient-Specific Kinematics. Tribology Letters 15, 343–351 (2003). https://doi.org/10.1023/B:TRIL.0000003057.60259.71

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TRIL.0000003057.60259.71

Navigation