Skip to main content
Log in

Design, Synthesis, and Catalytic Properties of Silica-Supported, Pt-Promoted Iron Fischer–Tropsch Catalysts

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Silica-supported iron catalysts (Fe/SiO2, FePt/SiO2, and FePtK/SiO2) were prepared using a novel nonaqueous (acetone) evaporative deposition technique. This preparation leads to relatively well-dispersed iron phases at modest (10%) metal loadings. Moreover, catalytic activities of these catalysts for Fischer–Tropsch synthesis are high and comparable to industrially relevant precipitated iron catalysts. Catalyst activities were tested following a nonregular L18 orthogonal array that enabled the number of 150-h activity tests to be reduced from 54 to 18; this statistical design was augmented with five additional runs to provide replication. Primary independent variables affecting catalysts' activity were promoter type, pretreatment gas composition (H2, H2/CO, or CO), pretreatment temperature (250, 280, or 320 °C), and reaction temperature (250 or 265 °C); iron carbide level measured from Mössbauer spectroscopy was correlated with activity in a separate analysis. Activity was found to increase in the order Fe/SiO2, FePt/SiO2, and FePtK/SiO2. For a given catalyst composition, activity increases to a maximum with increasing pretreatment temperature and increasing time. Catalyst activity was also positively correlated with increasing chi-carbide content for Fe/SiO2 and FePt/SiO2 catalysts but not for FePtK/SiO2. While pretreatment atmosphere greatly influences initial activity–time behavior, activity is less dependent on pretreatment after about 150 h of reaction. Steady-state methane and C2+ hydrocarbon selectivities (CO2-free basis) for the FePtK/SiO2 catalyst at 250–265 °C, 10 atm, and H2/CO = 1 are 7–9 and 91–93%, respectively, while its hydrocarbon productivity at 250 °C (normalized to 15 atm, H2/CO = 0.7) of 0.27 g HC/gcat/h is comparable to those reported for unsupported precipitated iron catalysts of high activity and selectivity. These results indicate that preparation of an active, selective, stable, attrition-resistant supported iron catalyst for Fischer–Tropsch synthesis is feasible. Promise for additional improvements in catalyst performance through application of advanced preparation methods and optimization of catalyst chemical and physical properties is also indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Fischer and H. Tropsch, Brennstoff-Chem. 7 (1926) 97.

    Google Scholar 

  2. H.H. Storch, N. Golumbic and R.B. Anderson, The Fischer-Tropsch and Related Synthesis. (John Wiley & Sons, New York, 1951).

    Google Scholar 

  3. M.E. Dry, in Part A, The Fischer-Tropsch Synthesis, J.R. Anderson and M. Boudart (eds) (Springer-Verlag, 1981) pp. 159-255.

  4. R.B. Anderson, The Fischer-Tropsch Synthesis (Wiley, New York, 1984).

    Google Scholar 

  5. S. Li, A. Li, S. Krishnamoorthy and E. Iglesia, Catal. Lett. 77 (2001) 197.

    Google Scholar 

  6. P.H. Emmett and S. Brunauer, J. Am. Chem., Soc. 59 (1937) 310.

    Google Scholar 

  7. M.E. Dry, T. Shingles and C.S. van H. Botha, J. Catal. 17 (1970) 341.

    Google Scholar 

  8. H. Arakawa and A.T. Bel, Ind. End. Chem. Process Des. Dev. 22 (1983) 97.

    Google Scholar 

  9. J.L. Rankin and C.H. Bartholomew, J. Catal. 100 (1985) 533.

    Google Scholar 

  10. S.A. Eliason and C.H. Bartholomew, Appl. Catal., A: Gen. 186 (1999) 229.

    Google Scholar 

  11. S. Li, G.D. Meitzner and E. Iglesia, J. Phys. Chem. B 105 (2001) 5743.

    Google Scholar 

  12. D.J. Dwyer and G.A. Somorjai, J. Catal. 52 (1978) 291.

    Google Scholar 

  13. S. Li, S. Krishnamoorthy, A. Li, G.D. Meitzner and E. Iglesia, J. Catal. 206 (2002) 202.

    Google Scholar 

  14. D.B. Bukur and X. Lang, Ind. Eng. Chem. Res. 38 (1999) 3270.

    Google Scholar 

  15. D.S. Kalakkad, M.D. Shroff, S. Kohler, N. Jackson and A.K. Datye, Appl. Catal., A: Gen. 133 (1995) 335.

    Google Scholar 

  16. R. Srinivasan, L. Xu, R.L. Spicer, F.L. Tungate and B.H. Davis, Fuel Sci. & Technol. Int. 14 (1996) 1337.

    Google Scholar 

  17. H.N. Pham, J. Reardon, and A.K. Datye, Powder Technol. 103 (1999) 95.

    Google Scholar 

  18. H.N. Pham, J. Reardon, and A.K. Datye, Powder Technol. 103 (1999) 95.

    Google Scholar 

  19. B.L. Bhatt, E.S. Schoub, E.C. Hedorn, D.M. Herron, D.W. Studer and D.M. Brown, Proc. of the Liquefaction Contractors Review Conf. (Pittsburgh, PA, 1992).

    Google Scholar 

  20. H.N. Pham and A.K. Datye, Symposium on Syngas Conversion to Fuels and Chemicals; 217th National Meeting, (American Chemical Society, Anaheim CA, 1999).

    Google Scholar 

  21. R. Zhang, J.G. Goodwin, Jr. and R. Oukaci, Appl. Catal. 189 (1999) 99.

    Google Scholar 

  22. M.A. Vannice, J. Catal. 37 (1975) 449.

    Google Scholar 

  23. M.A. Vannice, J. Catal. 37 (1975) 462.

    Google Scholar 

  24. G.B. McVicker and M.A. Vannice, J. Catal. 63 (1980) 25.

    Google Scholar 

  25. J.A. Amelse, L.H. Schwartz and J.B. Butt, J. Catal. 72 (1981) 95.

    Google Scholar 

  26. H.J. Jung, J. Catal. 76 (1982) 416.

    Google Scholar 

  27. J.W. Niemantsverdriet, A.M. van der Kraan, W.N. Delgass and M.A. Vannice, J. Phys. Chem. 89 (1985) 67.

    Google Scholar 

  28. V.K. Jones, L.R. Neubauer and C.H. Bartholomew, J. Phys. Chem. 90 (1986) 4832.

    Google Scholar 

  29. J.L. Rankin and C.H. Bartholomew, J. Catal. 100 (1985) 526.

    Google Scholar 

  30. M. Rameswaran and C.H. Bartholomew, J. Catal. 117 (1989) 218.

    Google Scholar 

  31. M.V. Cagnoli, S.G. Marchetti, N.G. Gallegos, A.M. Alvarez, R.C. Mercader and A.A. Yeramian, J. Catal. 123 (1990) 21.

    Google Scholar 

  32. R.J. O'Brien, L. Xu, S. Bao, A.P. Raje and B.H. Davis, Appl. Catal., A: Gen. 196 (2000) 173.

    Google Scholar 

  33. D.B. Bukur and C. Sivaraj, Appl. Catal., A: Gen. 231 (2002) 201.

    Google Scholar 

  34. R.J. Farrauto and C.H. Bartholomew, Fundamentals of Industrial Catalytic Processes. 1st ed. (Blackie Academic and Professional, 1997).

  35. G.W. Huber and C.H. Bartholomew, Stud. Surf. Sci. Catal. 136 (2001) 283.

    Google Scholar 

  36. A. Brenner and D.A. Hucul, Inorg. Chem. 18 (1979) 2836.

    Google Scholar 

  37. E. Iglesia, Appl. Catal., A: Gen. 161 (1997) 59.

    Google Scholar 

  38. C.H. Bartholomew, National Spring Meeting of the AIChE, New Orleans, 2003.

  39. V.I. Kovalchuk and B.N. Kuznetsov, J. Mol. Catal., A: Chem. 102 (1995) 103.

    Google Scholar 

  40. R.D. Jones and C.H. Bartholomew, Appl. Catal. 39 (1988) 77.

    Google Scholar 

  41. J. Xu and C.H. Bartholomew,paper in preparation (2003).

  42. C.F.J. Wu and M. Hamada, Experiments: Planning Analysis and Parameter Design Optimization, 2000.

  43. A. Brenner and J.R.L. Burwell, J. Catal. 52 (1978) 353.

    Google Scholar 

  44. C.H. Bartholomew and M. Boudart, J. Catal. 25 (1972) 173.

    Google Scholar 

  45. J.C.W. Kuo, Final Report Prepared for DOE, Mobil Research and Development Corp., 1985.

  46. H. KÖbel, P. Ackerman and F. Engelhardt, Proc. of the 4th World Petroleum Congress, Section IV/C (Carlo Columbo Publishers, Rome, 1955).

    Google Scholar 

  47. A.P. Raje and B.H. Davis, Catal. Today 36 (1997) 335.

    Google Scholar 

  48. A.P. Raje, R.J. O'Brien, and B.H. Davis, J. Catal. 180 (1998) 36.

    Google Scholar 

  49. R.J. O'Brien, L. Xu, R.L. Spicer and B.H. Davis, Energy and Fuels 10 (1996) 921.

    Google Scholar 

  50. C.H. Bartholomew, L.R. Neubauer and P.A. Smith. Proc. of the 10th International Congress on Catalysis. Budapest (Elsevier Science Publishers, Hungary, 1992).

    Google Scholar 

  51. C.H. Bartholomew, Surface Composition and Chemistry of Carbon Supported Pt-Fe Alloys, Ph.D. Dissertation, (Stanford University, Stanford, 1972.)

    Google Scholar 

  52. B.G. Johnson, C.H. Bartholomew and D.W. Goodman, J. Catal. 128 (1991) 231.

    Google Scholar 

  53. J.A. Rodriguez and D.W. Goodman, Surf. Sci. Rep. 14 (1991) 1.

    Google Scholar 

  54. K.P.R.M. Rao, F.E. Huggins, G.P. Huffman, R.J. Gormley, R.J. O'Brien and B.H. Davis, Energy & Fuels 10 (1996) 546.

    Google Scholar 

  55. S. Sun, C.B. Murray, D. Weller, L. Folks and A. Moser, Science 2000, 1989.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Bartholomew, C.H., Sudweeks, J. et al. Design, Synthesis, and Catalytic Properties of Silica-Supported, Pt-Promoted Iron Fischer–Tropsch Catalysts. Topics in Catalysis 26, 55–71 (2003). https://doi.org/10.1023/B:TOCA.0000012987.76556.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TOCA.0000012987.76556.63

Navigation