Skip to main content
Log in

Thrombin Domains: Structure, Function and Interaction with Platelet Receptors

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Thrombin plays a pivotal role in different biological phenomena, such as hemostasis, thrombosis, and cell differentiation. Indeed this protease catalyzes the conversion of fibrinogen into fibrin, the activation of coagulation factors V, VIII, XI, and XIII, but is also involved in the activation of many cell types and platelets. Thrombin bears some recognition domains and insertion loops, not found among other serine proteases of the coagulation system. In this review the properties of these thrombin domains, which regulate the specificity of the enzyme's interaction with substrates and inhibitors, are particularly emphasized. The example of thrombin interaction with the platelet membrane receptors, namely GpIb and PAR1, shows how the concerted action of the insertion loops and recognition domains is the key to solve the apparent enigma as to how thrombin can be at the same time a very efficient and specific enzyme for different substrates and inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stubbs MT, Bode W. The clot thickens: Clues provided bythrombin structure. Trends Biochem Sci 1995;20:23-28.

    Google Scholar 

  2. Weitz JI, Buller HR. Direct thrombin inhibitors in acute coronary syndromes: Present and future. Circulation 2002;105:1004-1011.

    Google Scholar 

  3. Vergnolle N, Derian CK, D'Andrea MR, Steinhoff M, Andrade-Gordon P. Characterization of thrombininduced leukocyte rolling and adherence: A potential proinflammatory role for proteinase-activated receptor-4.J Immunol 2002;169:1467-1473.

    Google Scholar 

  4. Bar-Shavit R, Sabbah V, Lampugnani MG, et al. An Arg-Gly-Asp sequence within thrombin promotes endothelial cell adhesion. J Cell Biol 1991;112:335-344.

    Google Scholar 

  5. Gurwitz D, Cunningham DD. Thrombin modulates and reverses neuroblastoma neurite outgrowth. Proc Natl Acad Sci USA 1988;85:3440-3444.

    Google Scholar 

  6. Stubbs MT, Oschkinat H, Mayr I, et al. The interaction of thrombin with fibrinogen. A structural basis for its speci-ficity. Eur J Biochem 1992;206:187-195.

    Google Scholar 

  7. Steen M, D¨ahlback B. Thrombin-mediated proteolysis of factor V resulting in gradual B-domain release and exposure of the factor Xa-binding site. J Biol Chem 2002;277:38424-38430.

    Google Scholar 

  8. Esmon CT, Lollar P. Involvement of thrombin anionbinding exosites 1 and 2 in the activation of factor V and factor VIII. J Biol Chem 1996;271:13882-13887.

    Google Scholar 

  9. Baglia FA, Walsh PN. Thrombin-mediated feedback activation of factor XI on the activated platelet surface is preferred over contact activation by factor XIIa or factor XIa. J Biol Chem 2000;275:20514-20519.

    Google Scholar 

  10. Sadasivan C, Yee VC. Interaction of the factor XIII activation peptide with alpha-thrombin. Crystal structure of its enzyme-substrate analog complex. J Biol Chem 2000;275:36942-36948.

    Google Scholar 

  11. Suidan HS, Niclou SP, Monard D. The thrombin receptor in the nervous system. Semin Thromb Hemost 1996;22:125-133.

    Google Scholar 

  12. Sambrano GR, Weiss EJ, Zheng YW, Huang W, Coughlin SR. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature 2001;413:74-78.

    Google Scholar 

  13. Bode W, Turk D, Karshikov A. The refined 1.9-_ A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketoneinhibited human ?-thrombin: Structure, analysis, overall structure, electrostatic properties, detaild active-site geometry, and structure-function relationship. Protein Sci 1992;1:426-471.

    Google Scholar 

  14. Bode W, Brandstetter H, Mather T, Stubbs MT. Comparative analysis of haemostatic proteinases: Structural aspects of thrombin, factor Xa, factor IXa and protein C.Thromb Haemost 1997;78:501-511.

    Google Scholar 

  15. Di Cera E, Guinto ER, Vindigni A, et al. The Na+ binding site of thrombin. J Biol Chem 1995;270:22089-22092.

    Google Scholar 

  16. Huntington JA, Esmon CT. The molecular basis of thrombin allostery revealed by a 1.8 $#x00C5; structure of the "Slow" form. Structure (Camb) 2003;11:469-479.

    Google Scholar 

  17. Hofsteenge J, Braun PJ, Stone SR. Enzymatic properties of proteolytic derivatives of human ?-thrombin. Biochemistry 1988;27:2144-2151.

    Google Scholar 

  18. De Cristofaro R, Fenton JW II, Di Cera E. The linkage between proton binding and amidase activity in human ?-thrombin. Biochemistry 1991;31:1147-1153.

    Google Scholar 

  19. Rydel TJ, Yin M, Padmanabhan KP, et al. Crystallographic structure of human gamma-thrombin. J Biol Chem 1994;269:22000-22006.

    Google Scholar 

  20. Myles T, Le Bonniec BF, Betz A, Stone SR. Electrostatic steering and ionic tethering in the formation of thrombinhirudin complexes: The role of the thrombin anionbinding exosite-I. Biochemistry 2001;40:4972-4979.

    Google Scholar 

  21. Karshikov A, Bode W, Tulinsky A, Stone SR. Electrostatic interactions in the association of proteins: An analysis of the thrombin-hirudin complex. Protein Sci 1992;1:727-735.

    Google Scholar 

  22. Hall SW, Nagashima M, Zhao L, Morser J, Leung LL.Thrombin interacts with thrombomodulin, protein C, thrombin-activatable fibrinolysis inhibitor via specific and distinct domains. J Biol Chem 1999;274:25510- 25516.

    Google Scholar 

  23. Myles T, Le Bonniec BF, Stone SR. The dual role of thrombin's anion-binding exosite-I in the recognition and cleavage of the protease-activated receptor 1. Eur J Biochem 2001;268:70-77.

    Google Scholar 

  24. Myles T, Church FC, Whinna HC, Monard D, Stone SR. Role of thrombin anion-binding exosite-I in the formation of thrombin-serpin complexes. J Biol Chem 1998;273:31203-31208.

    Google Scholar 

  25. Hall SW, Gibbs CS, Leung LL. Identification of critical residues on thrombin mediating its interaction with fibrin.Thromb Haemost 2001;86:1466-1474.

    Google Scholar 

  26. Myles T, Yun TH, Hall SW, Leung LL. An extensive interaction interface between thrombin and factor V is required for factor V activation. J Biol Chem 2001;276:25143-25149.

    Google Scholar 

  27. Rydel TJ, Ravichandran KG, Tulinsky A, et al. The structure of a complex of recombinant hirudin and human ?-thrombin. Science 1990;249:277-280.

    Google Scholar 

  28. Rydel TJ, Tulinsky A, Bode W, Huber R. Refined structure of the hirudin-thrombin complex. J Mol Biol 1991;221:583-601.

    Google Scholar 

  29. Rose T, Di Cera E. Three-dimensional modeling of thrombin-fibrinogen interaction. J Biol Chem 2002;277: 18875-18880.

    Google Scholar 

  30. Anderson PJ, Nesset A, Dharmawardana KR, Bock PE.Characterization of proexosite I on prothrombin. J Biol Chem 2000;275:16428-16434.

    Google Scholar 

  31. Anderson PJ, Nesset A, Dharmawardana KR, Bock PE.Role of Proexosite I in factor Va-dependent substrate interactions of prothrombin activation. J Biol Chem 2000;275:16435-16442.

    Google Scholar 

  32. Akhavan S, De Cristofaro R, Peyvandi F, Lavoretano S, Landolfi R, Mannucci PM.Molecular and functional characterization of a natural homozygous Arg67 $#x2192; His mutation in the prothrombin gene of a patient with a severe procoagulant defect contrasting with a mild hemorrhagic phenotype. Blood 2002;100:1347-1353.

    Google Scholar 

  33. Arni RK, Padmanabhan K, Padmanabhan KP, Wu TP, Tulinsky A. Structures of the noncovalent complexes of human and bovine prothrombin factor 2 with human PPACK-thrombin. Biochemistry 1993;32:4727-4737.

    Google Scholar 

  34. Margalit H, Fischer N, Ben-Sasson SA. Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem 1993;268:19228-19231.

    Google Scholar 

  35. Gan ZR, Li Y, Chen Z, Lewis SD, Shafer JA. Identification of basic amino acid residues in thrombin essential for heparin-catalyzed inactivation by antithrombin III.J Biol Chem 1994;269:1301-1305.

    Google Scholar 

  36. Sheehan JP, Sadler JE. Molecular mapping of the heparin-binding exosite of thrombin. Proc Natl Acad Sci USA 1994;91:5518-5522.

    Google Scholar 

  37. Belzar KJ, Zhou A, Carrell RW, Gettins PG, Huntington JA. Helix D elongation and allosteric activation of antithrombin.J Biol Chem 2002;277:8551-8558.

    Google Scholar 

  38. Olson ST, Bjork I. Predominant contribution of surface approximation to the mechanism of heparin acceleration of the antithrombin-thrombin reaction. Elucidation from salt concentration effects. J Biol Chem 1991;266:6353- 6364.

    Google Scholar 

  39. Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes.J Mol Biol 1997;272:688-698.

    Google Scholar 

  40. Richardson JL, Kr$#x00F6;ger B, Hoefllken W, et al. Crystral structure of the human ?-thrombin-haemadin complex: A exosite II-binding inhibitor. EMBO J 2000;19:5650- 5660.

    Google Scholar 

  41. De Candia E, De Cristofaro R, De Marco L, Mazzucato M, Picozzi M, Landolfi R. Thrombin interaction with platelet GpIb: Role of the heparin binding domain. Thromb Haemost 1997;77:735-740.

    Google Scholar 

  42. De Cristofaro R, De Candia E, Landolfi R, Rutella S, Hall SW. Structural and functional mapping of the thrombin domain involved in the binding to the platelet glycoprotein Ib. Biochemistry 2001;40:3268-3273.

    Google Scholar 

  43. Li CQ, Vindigni A, Sadler JE, Wardell MR. Platelet glycoprotein Ib alpha binds to thrombin anion-binding exosite II inducing allosteric changes in the activity of thrombin.J Biol Chem 2001;276:6161-6168.

    Google Scholar 

  44. Ye J, Rezaie AR, Esmon CT. Glycosaminoglycan contributions to both protein C activation and thrombin inhibition involve a common arginine-rich site in thrombin that includes residues arginine 93, 97, 101. J Biol Chem 1994;269:17965-17970.

    Google Scholar 

  45. De Cristofaro R, De Candia E, Landolfi R. Effect of high and low molecular weight heparins on thrombinthrombomodulin interaction and protein C activation.Circulation 1998;98:1297-1301.

    Google Scholar 

  46. Esmon CT, Lollar P. Involvement of thrombin anionbinding exosites 1 and 2 in the activation of factor V and factor VIII. J Biol Chem 1996;271:13882-13887.

    Google Scholar 

  47. Le Bonniec BF, Guinto ER, MacGillivray RTA, Stone SR, Esmon CT. The role of thrombin's Tyr-Pro-Pro-Trp motif in the interaction with fibrinogen, thrombomodulin, Protein C, antithrombin III, and the Kunitz inhibitors. J Biol Chem 1993;268:19055-19061.

    Google Scholar 

  48. Ascenzi P, Coletta M, Amiconi G, et al. Binding of the bovine basic pancreatic trypsin inhibitor (Kunitz) to human ?-, ß-and ?-thrombin: A kinetic and thermodynamic study. Biochim Biophys Acta 1988;956:156-161.

    Google Scholar 

  49. Le Bonniec BF, Guinto ER, Stone SR. Identification of thrombin residues that modulate its interactions with antithrombin III and ?1-antitrypsin. Biochemistry 1995;34:12241-12248.

    Google Scholar 

  50. Rezaie AR. Tryptophan 60-D in the B-insertion loop of thrombin modulates the thrombin-antithrombin reaction.Biochemistry 1996;35:1918-1924.

    Google Scholar 

  51. Bar-Shavit R, Kahn AJ, Wilner GD, Fenton JW II. Monocyte chemotaxis: Stimulation by a specific exosite region in thrombin. Science 1983;220:728-731.

    Google Scholar 

  52. Marty I, Peclat V, Kirdaite G, Salvi R, So A, Busso N.Amelioration of collagen-induced arthritis by thrombin inhibition. J Clin Invest 2001;107:631-640.

    Google Scholar 

  53. Horne MK, Gralnick HR. The oligosaccharide of human thrombin: Investigations on functional significance.Blood 1984;63:188-194.

    Google Scholar 

  54. Brezniak DV, Brower MS, Witting JI, Walz DA, Fenton JW 2nd. Human alpha-to zeta-thrombin cleavage occurs with neutrophil cathepsin G or chymotrypsin while fibrinogen clotting activity is retained. Biochemistry 1990;29:3536-3542.

    Google Scholar 

  55. Brower MS, Walz DA, Garry KE, Fenton JW II. Human neutrophil elastase alters human alpha-thrombin function: Limited proteolysis near the gamma-cleavage site results in decreased fibrinogen clotting and plateletstimulatory activity. Blood 1987;69:813-819.

    Google Scholar 

  56. Elion J, Boissel JP, Le Bonniec B, et al. Proteolytic derivatives of thrombin. Ann NY Acad Sci 1986;485:16-26.

    Google Scholar 

  57. Gan ZR, Lewis SD, Stone JR, Shafer JA. Reconstitution of catalytically competent human zeta-thrombin by combination of zeta-thrombin residues A1-36 and B1-148 and an Escherichia coli expressed polypeptide corresponding to zeta-thrombin residues B149-259. Biochemistry 1991;30:11694-11699.

    Google Scholar 

  58. De Cristofaro R, Landolfi R. Allosteric modulation of BPTI interaction with human alpha-and zeta-thrombin.Eur J Biochem 1999;260:97-102.

    Google Scholar 

  59. Wang SX, Esmon CT, Fletterick RJ. Crystal structure of thrombin-ecotin reveals conformational changes and extended interactions. Biochemistry 2001;40:10038- 10046.

    Google Scholar 

  60. van de Locht A, Bode W, Huber R, et al. The thrombin E192Q-BPTI complex reveals gross structural rearrangements: Implications for the interaction with antithrombin and thrombomodulin. EMBO J 1997;16:2977-2984.

    Google Scholar 

  61. Le Bonniec BF, Guinto ER, Esmon CT. Interaction of thrombin desETW with antithrombin III, the Kunitz inhibitors, thrombomodulin and Protein C. J Biol Chem 1992;267:19341-19348.

    Google Scholar 

  62. Le Bonniec BF, Betz A, Guinto ER, Esmon CT, Stone SR. Mapping of the thrombin des-ETW conformation by using site-directed mutants of hirudin. Evidence for the induction of nonlocal modifications by mutagenesis. Biochemistry 1994;33:3959-3966.

    Google Scholar 

  63. Di Bella EE, Sheraga HA. The role of the insertion loop around tryptophan 148 in the activity of thrombin. Biochemistry 1996;35:4427-4433.

    Google Scholar 

  64. Wells CM, Di Cera E. Thrombin is a Na+-activated enzyme.Biochemistry 1992;31:11721-11730.

    Google Scholar 

  65. Di Cera E, Dang QD, Ayala YM. Molecular mechanisms of thrombin function. Cell Mol Life Sci 1997;53:701-730.

    Google Scholar 

  66. Guinto ER, Caccia S, Rose T, Futterer K, Waksman G, Di Cera E. Unexpected crucial role of residue 225 in serine proteases. Proc Natl Acad Sci USA 1999;96:1852- 1857.

    Google Scholar 

  67. Guinto ER, Vindigni A, Ayala YM, Dang QD, Di Cera E.Identification of residues linked to the slow$#x2192;fast transition of thrombin. Proc Natl Acad Sci USA 1995;92:1185- 1189.

    Google Scholar 

  68. Orthner CL, Kosow DP. Evidence that human ?-thrombin is a monovalent cation-activated enzyme. Arch Biochem Biophys 1980;202:63-75.

    Google Scholar 

  69. De Cristofaro R, Di Cera E. Effect of protons on the amidase activity of human alpha-thrombin. Analysis in terms of a general linkage scheme. J Mol Biol 1990;216:1077- 1085.

    Google Scholar 

  70. Stone SR, Betz A, Hofsteenge J. Mechanistic studies on thrombin catalysis. Biochemistry 1991;30:9841-9848.

    Google Scholar 

  71. Di Cera E, De Cristofaro R, Albright DJ, Fenton JW II.Linkage between Proton binding and amidase activity in human alpha-thrombin: Effect of ions and temperature.Biochemistry 1991;30:7913-7924.

    Google Scholar 

  72. Picozzi M, Landolfi R, De Cristofaro R. Effects of protons on the thrombin-fibrinogen interaction. Eur J Biochem 1994;219:1013-1021.

    Google Scholar 

  73. Naski MC, Fenton JW II, Maraganore JM, Olson ST, Shafer JA. The COOH-terminal domain of hirudin. An exosite-directed competitive inhibitor of the action of ?-thrombin on fibrinogen. J Biol Chem 1990;265:13484- 13489.

    Google Scholar 

  74. Hortin GL, Trimpe BL. Allosteric changes in thrombin's activity produced by peptides corresponding to segments of natural inhibitors and substrates. J Biol Chem 1991;266:6866-6871.

    Google Scholar 

  75. Liu LW, Vu TK, Esmon CT, Coughlin SR. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J Biol Chem 1991;266:16977-16980.

    Google Scholar 

  76. Bouton MC, Jandrot-Perrus M, Bezaud A, Guillin MC. Late-fibrin(ogen) fragment E modulates human ?-thrombin specificity. Eur J Biochem 1993;215:143-149.

    Google Scholar 

  77. De Cristofaro R, Rocca B, Bizzi B, Landolfi R. The linkage between binding of the C-terminal domain of hirudin and amydase activity in human ?-thrombin. Biochem J 1993;289:475-480.

    Google Scholar 

  78. Duffy EJ, Angliker H, Le Bonniec BF, Stone SR. Allosteric modulation of the activity of thrombin. Biochem J 1997;321:361-365.

    Google Scholar 

  79. Parry MAA, Stone SR, Hofsteenge J, Jackman MP.Evidence for common structural changes in thrombin induced by active-site or exosite binding. Biochem J 1993;290:665-670.

    Google Scholar 

  80. Ayala Y, Di Cera E. Molecular recognition by thrombin.Role of the slow $#x2192; fast transition, site-specific ion binding energetics and thermodynamic mapping of structural components. J Mol Biol 1994;235:733-746.

    Google Scholar 

  81. De Cristofaro R, Picozzi M, Morosetti R, Landolfi R. Effect of sodium on the energetics of thrombin-thrombomodulin interaction and its relevance for Protein C hydrolysis.J Mol Biol 1996;258:190-200.

    Google Scholar 

  82. Di Cera E, Hopfner KP, Dang QD. Theory of allosteric effects in serine proteases. Biophys J1996;70:174-181.

    Google Scholar 

  83. Shainoff JR, Smejkal GB, DiBello PM, Sung SS, Bush LA, Di Cera E. Allosteric effects potentiating the release of the second fibrinopeptide A from fibrinogen by thrombin.J Biol Chem 2002;277:19367-19373.

    Google Scholar 

  84. Naski MC, Lorand L, Shafer JA. Characterization of the kinetic pathway for fibrin promotion of alpha-thrombincatalyzed activation of plasma factor XIII. Biochemistry 1991;30:934-941.

    Google Scholar 

  85. Folsom AR. Hemostatic risk factors for atherothrombotic disease: An epidemiologic view. Thromb Haemost 2001;86:366-373.

    Google Scholar 

  86. Lorand L. Factor XIII: Structure, activation, interactions with fibrinogen and fibrin. Ann NY Acad Sci 2001;936:291-311.

    Google Scholar 

  87. Esmon CT. Regulation of blood coagulation. Biochim Biophys Acta 2000;1477:349-360.

    Google Scholar 

  88. Wang W, Nagashima M, Schneider M, Morser J, Nesheim M. Elements of the primary structure of thrombomodulin required for efficient thrombin-activable fibrinolysis inhibitor activation. J Biol Chem 2000;275:22942- 22947.

    Google Scholar 

  89. Le Bonniec BF, Esmon CT. Glu192 ? Gln substitution in thrombin mimics the catalytic switch induced by thrombomodulin. Proc Natl Acad Sci USA 1991;88:7371-7355.

    Google Scholar 

  90. Guinto ER, Ye J, Le Bonniec BF, Esmon CT. Glu192 $#x2192; Gln substitution in thrombin yields an enzyme that is effectively inhibited by bovine pancreatic trypsin inhibitor and tissue factor pathway inhibitor. J Biol Chem 1994;269:18395-18400.

    Google Scholar 

  91. Rezaie AR, He X, Esmon CT. Thrombomodulin increases the rate of thrombin inhibition by BPTI. Biochemistry 1998;37:693-699.

    Google Scholar 

  92. Fuentes-Prior P, Iwanaga Y, Huber R, et al. Structural basis for the anticoagulant activity of the thrombinthrombomodulin complex. Nature 2000;404:518-525.

    Google Scholar 

  93. Andrews RK, Shen Y, Gardiner EE, Dong JF, Lopez JA, Berndt MC. The glycoprotein Ib-IX-V complex in platelet adhesion and signaling. Thromb Haemost 1999;82:357-364.

    Google Scholar 

  94. Vu T-K, Hung D, Wheaton V, Coughlin S. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 1991;64:1057-1068.

    Google Scholar 

  95. Brass LF, Molino M. Protease-activated G proteincoupled receptors on human platelets and endothelial cells. Thromb Haemost 1997;78:234-241.

    Google Scholar 

  96. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR. Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. J Clin Invest 1999;103:879-887.

    Google Scholar 

  97. Nurden AT, Didry D, Rosa JP. Molecular defects of platelets in Bernard-Soulier syndrome. Blood Cells 1983; 9:333-358.

    Google Scholar 

  98. Mathews II, Padmanabhan KP, Ganesh V, et al. Crystallographic structures of thrombin complexed with thrombin receptor peptides: Existence of expected and novel binding modes. Biochemistry 1994;33:3266-3279.

    Google Scholar 

  99. Jacques SL, LeMasurier M, Sheridan PJ, Seeley SK, Kuliopulos A. Substrate-assisted catalysis of the PAR1 thrombin receptor. Enhancement of macromolecular association and cleavage. J Biol Chem 2000;275:40671- 40678.

    Google Scholar 

  100. Ayala YM, Cantwell AM, Rose T, Bush LA, Arosio D, Di Cera E. Molecular mapping of thrombin-receptor interactions.Proteins 2000;45:107-116.

    Google Scholar 

  101. Buchanan S-ST-C, Gay NJ. Structural and functional diversity in the leucine-rich repeat family of proteins. Prog Biophys Molec Biol 1996;65:1-44.

    Google Scholar 

  102. Dormann D, Clemetson KJ, Kehrel BE. The GPIb thrombin-binding site is essential for thrombin-induced platelet procoagulant activity. Blood 2000;96:2469-2478.

    Google Scholar 

  103. Gralnick JR, Williams LP, McKeown K, Hansmann JW, Fenton JW, II, Krutzsch H. High-affinity ?-thrombin binding to platelet glycoprotein Ib?: Identification of two binding domains. Proc Natl Acad Sci USA 1994;91:6334- 6338.

    Google Scholar 

  104. De Cristofaro R, De Candia E. Thrombin interaction with platelet GpIb: Structural mapping and effects on platelet activation (review). Int J Mol Med 1999;3:363-371.

    Google Scholar 

  105. De Cristofaro R, De Candia E, Rutella S, Weitz JI. The Asp(272)-Glu(282) region of platelet glycoprotein Ibalpha interacts with the heparin-binding site of alpha-thrombin and protects the enzyme from the heparin-catalyzed inhibition by antithrombin III. J Biol Chem 2000;275:3887- 3895.

    Google Scholar 

  106. Uff S, Clemetson JM, Harrison T, Clemetson KJ, Emsley J. Crystal structure of the platelet glycoprotein Ibalpha N-terminal domain reveals an unmasking mechanism for receptor activation. J Biol Chem 2002;277:35657- 35663.

    Google Scholar 

  107. Huizinga EG, Tsuji S, Romijn RAP, et al. Structures of Glycoprotein Ib and its complex with vonWillebrand factor A1 domain. Science 2002;297:1176-1179.

    Google Scholar 

  108. De Cristofaro R, De Candia E, Croce G, Morosetti R, Landolfi R. Binding of human ?-thrombin to platelet GpIb: Energetics and functional effects. Biochem J 1998;332:643-650.

    Google Scholar 

  109. Celikel R, McClintock RA, Roberts GR, et al. Modulation of ?-thrombin function by distinct interactions with platelet glycoprotein Ib?. Science 2003;301:218-221.

    Google Scholar 

  110. Dumas JJ, Kumar R, Seehra J, Somers WS, Mosyak L. Crystal Structure of the GpIb-Thrombin Complex Essential for Platelet Aggregation. Science 2003;301: 222-226.

    Google Scholar 

  111. De Cristofaro R, De Filippis V. The interaction of the 268- 282 region of GpIb-alpha with the heparin binding site of thrombin inhibits the enzyme activation of factor VIII.Biochem J 2003;373:593-601.

    Google Scholar 

  112. De Candia E, De Cristofaro R, Landolfi R. Thrombininduced platelet activation is inhibited by high-and lowmolecular-weight heparin. Circulation 1999;99:3308- 3314.

    Google Scholar 

  113. De Candia E, Hall SW, Rutella S, Landolfi R, Andrews RK, De Cristofaro R. Binding of thrombin to glycoprotein Ib accelerates the hydrolysis of PAR1 on intact platelets.J Biol Chem 2001;276:4692-4698.

    Google Scholar 

  114. Greco NJ, Tandon NN, Jones GD, et al. Contribution of glycoprotein Ib and the seven transmembrane domain receptor to increases in platelet cytoplasmic [Ca2+] induced by ?-thrombin. Biochemistry 1996;35:906-914.

    Google Scholar 

  115. Greco NJ, Jones GD, Tandon NN, Kornhauser R, Jackson B, Jamieson GA. Differentiation of the two forms of GpIb functioning as receptors for ?-thrombin and von Willebrand factor: Ca2+ responses of protease-treated human platelets activated with ?-thrombin and the tethered ligand peptide. Biochemistry 1996;35:915-921.

    Google Scholar 

  116. Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR. PAR3 is a cofactor for PAR4 activation by thrombin. Nature 2000;404:609-613.

    Google Scholar 

  117. Xu J, Esmon NL, Esmon CT. Reconstitution of the human endothelial cell protein C receptor with thrombomodulin in phosphatidylcholine vesicles enhances protein C activation.J Biol Chem 1999;274:6704-6710.

    Google Scholar 

  118. Laszik Z, Mitro A, Taylor FB Jr, Ferrell G, Esmon CT. Human protein C receptor is present primarily on endothelium of large blood vessels: Implications for the control of the protein C pathway. Circulation 1997;96:3633-3640.

    Google Scholar 

  119. De Cristofaro R, De Candia E, Picozzi M, Landolfi R.Conformational transitions linked to active site ligation in human thrombin: Effect on the interaction with fibrinogen and the cleavable platelet receptor. J Mol Biol 1995;245:447-458.

    Google Scholar 

  120. Wu QY, Sheehan JP, Tsiang M, Lentz SR, Birktoft JJ, Sadler JE. Single amino acid substitutions dissociate fibrinogen-clotting and thrombomodulin-binding activities of human thrombin. Proc Natl Acad Sci USA 1991;88:6775-6779.

    Google Scholar 

  121. Mathews II, Padmanabhan KP, Tulinsky A, Sadler JE.Structure of a nonadecapeptide of the fifth EGF domain of thrombomodulin complexed with thrombin. Biochemistry 1994;33:13547-13552.

    Google Scholar 

  122. Wood MJ, Sampoli Benitez BA, Komives EA. Solution structure of the Smallest cofactor-active fragment of thrombomodulin. Nat Struct Biol 2000;7:200-204.

    Google Scholar 

  123. Sheehan JP, Wu Q, Tollefsen DM, Sadler JE. Mutagenesis of thrombin selectively modulates inhibition by serpins heparin cofactor II and antithrombin III. Interaction with the anion-binding exosite determines heparin cofactor II specificity. J Biol Chem 1993;268:3639-3645.

    Google Scholar 

  124. Sheehan JP, Tollefsen DM, Sadler JE. Heparin cofactor II is regulated allosterically and not primarily by template effects. Studies with mutant thrombins and glycosaminoglycans.J Biol Chem 1993;269:32747-32751.

    Google Scholar 

  125. Richardson JL, Fuentes-Prior P, Sadler JE, Huber R, Bode W. Characterization of the residues involved in the human ?-thrombin-haemadin complex: An exosite IIbinding inhibitor. Biochemistry 2002;41:2535-2542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cristofaro, R., De Candia, E. Thrombin Domains: Structure, Function and Interaction with Platelet Receptors. J Thromb Thrombolysis 15, 151–163 (2003). https://doi.org/10.1023/B:THRO.0000011370.80989.7b

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:THRO.0000011370.80989.7b

Navigation