Skip to main content
Log in

Geoeffectiveness of interplanetary shocks during solar minimum (1995–1996) and solar maximum (2000)

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Plasma and magnetic field parameter variations across fast forward interplanetary shocks are analyzed during the last solar cycle minimum (1995–1996, 15 shocks), and maximum year 2000 (50 shocks). It was observed that the solar wind velocity and magnetic field strength variation across the shocks were the parameters better correlated with Dst. Superposed epoch analysis centered on the shock showed that, during solar minimum, B z profiles had a southward, long-duration variation superposed with fluctuations, whereas in solar maximum the B z profile presented 2 peaks. The first peak occurred 4 hr after the shock, and seems to be associated with the magnetic field disturbed by the shock in the sheath region. The second peak occurred 19 hr after the shock, and seems to be associated with the ejecta fields. The difference in shape and peak in solar maximum (Dst peak =−50 nT, moderate activity) and minimum (Dst peak =−30 nT, weak activity) in average Dst profiles after shocks are, probably, a consequence of the energy injection in the magnetosphere being driven by different interplanetary southward magnetic structures. A statistical distribution of geomagnetic activity levels following interplanetary shocks was also obtained. It was observed that during solar maximum, 36% of interplanetary shocks were followed by intense (Dst≤−100 nT) and 28% by moderate (−50≤Dst <−100 nT) geomagnetic activity. During solar minimum, 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity, respectively. Thus, during solar maximum a higher relative number of interplanetary shocks might be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50–60% to be followed by intense/moderate geomagnetic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña, M. H., Ogilvie, K. W., Baker, D. N., Curtis, S. A., Fairfield, D. H., and Mish, W. H.: 1995, Space Sci. Rev. 71, 5.

    Article  ADS  Google Scholar 

  • Berdichevsky, D. B., Szabo, A., Lepping, R. P., Viñas, A. F., and Mariani, F.: 2000, J. Geophys. Res. 105, 27289.

    Article  ADS  Google Scholar 

  • Bothmer, V. and Schwenn, R.: 1995, J. Geomag. Geoelectr. 47, 1127.

    Google Scholar 

  • Burlaga, L. F.: 1995, Interplanetary Magnetohydrodynamics, Oxford University Press, New York.

    Google Scholar 

  • Burlaga, L. F., Sittler, E., Mariani, F., and Schwenn, R.: 1981, J. Geophys. Res. 86, 6673.

    ADS  Google Scholar 

  • Cane, H. V., Richardson, I. G., and Wibberenz, G.: 1997, J. Gepophys. Res. 102, 7075.

    ADS  Google Scholar 

  • Cane, H. V., Richardson, I. G, and Cyr, O. C. St.: 2000, Geophys. Res. Lett. 27, 3591.

    Article  ADS  Google Scholar 

  • Domingo, V.: 1996, J. Geomag. Geoelectr. 48, 24.

    Google Scholar 

  • Dryer, M.: 1975, Space Sci. Rev. 17, 277.

    Article  ADS  Google Scholar 

  • Dungey, J. W.: 1961, Phys. Rev. Lett. 6, 47.

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W. D., Vieira, L. E. A., Dal Lago, A., Guarnieri, F. L. Prestes, A., Gonzalez, A. L. C., and Schuch, N. J.: 2003a, Braz. J. Phys. 33, 115.

    Article  Google Scholar 

  • Echer, E., Gonzalez, W. D., Dal Lago, A., Vieira, L. E. A., Guarnieri, F. L., Clua de Gonzalez, A. L., and Schuch, N. J.: 2003b, Adv. Space Res., submitted.

  • Echer, E., Gonzalez, W. D., Alves, M. V., Gonzalez, A. L. C., Dal Lago, A., Vieira, L. E. A., Guarnieri, F. L., and Schuch, N. J.: 2003c, Proc. ISCS 2003 Symposium, 'solar Variability as an Input to the Earth's Environment' ESA SP–535, 641.

  • Gonzalez, W. D. and Tsurutani, B. T.: 1987, Planetary Space Sci. 35, 1101 (GT87).

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyliunas, V. M.: 1994, J. Geophys. Res. 99, 5771.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., Clúa de Gonzalez, A. L., Dal Lago, A., Tsurutani, B. T., Arballo, J. K., Lakhina, G. K., Buti, B., Ho, C. M., and Wu, S.-T: 1998, Geophys. Res. Lett. 25, 963.

    Article  ADS  Google Scholar 

  • Gonzalez, W. D., Tsurutani, B. T., and Clúa de Gonzalez, A. L.: 1999, Space Sci. Rev. 88, 529.

    Article  ADS  Google Scholar 

  • Gosling, J. T.: 1997, in N. Crooker, J. A. Joselyn and J. Feynman (eds.), Coronal Mass Ejections, AGU Monograph 99, American Geophysical Union, Washington D.C.

    Google Scholar 

  • Gosling, J. T., Bame, S. J., McComas, D. J., and Phillips, J. L.: 1990, Geophys. Res. Lett. 17, 901.

    ADS  Google Scholar 

  • Gosling, J. T., McComas, D. J., Phillips, J. L., and Bame, S. J.: 1991, J. Geophys. Res. 96, 7831.

    ADS  Google Scholar 

  • Jurac, S., Kasper, J. C., Richardson, J. D., and Lazarus, A. J.: 2002, Geophys. Res. Lett. 29, 10.1029/2001GL014034.

  • McComas, D. J., Gosling, J. T., Bame, S. J., Smith, E. J., and Cane, H. V.: 1989, J. Geophys. Res. 94, 1465.

    ADS  Google Scholar 

  • Nishida, A.: 1978, Geomagnetic Diagnosis of the Magnetosphere, Physics and Chemistry in Space, V.9, Springer-Verlag, New York.

    Google Scholar 

  • Schwenn, R.: 1986, Space Sci. Rev. 44, 139.

    Article  ADS  Google Scholar 

  • Schwenn, R.: 2000, Adv. Space Res. 26, 43.

    ADS  Google Scholar 

  • Spiegel, M. R. and Stephens, L. J.: 1998, Schaums Outline of Statistics, McGraw-Hill Inc. USA.

    Google Scholar 

  • Stone, E. C., Frandsen, A. M., Mewaldt, R. A., Christian, E. R., Margolies, D., Ormes, J. F., and Snow, F.: 1998, Space Sci. Rev. 86, 1.

    ADS  Google Scholar 

  • Sugiura, M.: 1964, Hourly values of equatorial Dst for the IGY, Annual International Geophysical Year, V. 35, p. 9, Pergamon, New York.

    Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D., Tang, F., Akasofu, S.-I., and Smith, E. J.: 1988, J. Geophys. Res. 93, 8519.

    ADS  Google Scholar 

  • Tsurutani, B. T., Gonzalez, W. D., Tang, F., and Lee, Y. T.: 1992, Geophys. Res. Lett. 19, 73.

    ADS  Google Scholar 

  • Webb D. F., Cliver, E. W., Crooker, N. U., St. Cyr, O. C., and Thompson, B. J.: 2000, J. Geophys. Res. 105, 7491.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echer, E., Alves, M. & Gonzalez, W. Geoeffectiveness of interplanetary shocks during solar minimum (1995–1996) and solar maximum (2000). Solar Physics 221, 361–380 (2004). https://doi.org/10.1023/B:SOLA.0000035045.65224.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SOLA.0000035045.65224.f3

Keywords

Navigation