Skip to main content
Log in

Quasi-Rayleigh Waves in Transversely Isotropic Half-Space with Inclined Axis of Symmetry

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

A method for determination of characteristics of quasi-Rayleigh (qR) wave in a transversely isotropic homogeneous half-space with inclined axis of symmetry is outlined. The solution is obtained as a superposition of qP, qSV and qSH waves, and surface wave velocity is determined from the boundary conditions at the free surface and at infinity, as in case of Rayleigh wave in an isotropic half-space. Though the theory is simple enough, a numerical procedure for calculation of surface wave velocity presents some difficulties. The difficulty is caused by necessity to calculate complex roots of a non-linear equation, which in turn contains functions determined as roots of non-linear equations with complex coefficients. Numerical analysis shows that roots of the equation corresponding to the boundary conditions do not exist in the whole domain of azimuths and inclinations of the symmetry axis. The domain of existence of qR wave depends on the ratio of the elastic parameters: for some strongly anisotropic models the wave cannot exist at all. For some angles of inclination qR-wave velocities deviate from those calculated on the basis of the perturbation method valid for weak anisotropy, though they have the same tendency of variation with azimuth. The phase of qR wave varies with depth unlike Rayleigh wave in an isotropic half-space. Unlike Rayleigh wave in an isotropic half-space, qR wave has three components - vertical, radial and transverse. Particle motion in horizontal plane is elliptic. Direction of the major axis of the ellipsis coincides with the direction of propagation only in azimuths 0° (180°) and 90° (270°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson D.L., 1961. Elastic wave propagation in layered anisotropic media. J. Geophys. Res., 66, 2953–2963.

    Article  Google Scholar 

  • Crampin S., 1970. The dispersion of surface waves in multilayered anisotropic media. Geophys. J. Roy. astr. Soc., 21, 387–402.

    Article  Google Scholar 

  • Crampin S., 1975. Distinctive particle motion of surface waves as a diagnostic of anisotropic layering. Geophys. J. Roy. astr. Soc., 40, 177–186.

    Article  Google Scholar 

  • Crampin S. and Taylor D.B., 1971, The propagation of surface waves in anisotropic media, Geophys. J. Roy. astr. Soc., 25, 71–87.

    Article  Google Scholar 

  • Farnell G.W., 1970. Properties of elastic surface waves. In: W.P. Mason (Ed.), Physical Acoustics VI, Academic Press, New York, 109–166.

    Google Scholar 

  • Forsyth D.W., 1975. The early structural evolution and anisotropy of oceanic upper mantle. Geophys. J. Roy. astr. Soc., 43, 103–162.

    Article  Google Scholar 

  • Laske G. and Masters G., 1998. Surface wave polarization data and global anisotropic structure. Geophys. J. Int., 132, 508–520.

    Article  Google Scholar 

  • Lothe J. and Barnett D.M., 1976. On the existence of Rayleigh (surface) wave solutions for anisotropic half-spaces with free surface. J. Appl. Phys., 47, 428–433.

    Article  Google Scholar 

  • Maupin V., 1989. Surface waves in weakly anisotropic structures: on the use of ordinary or quasi-degenerate perturbation methods. Geophys. J. Int., 98, 553–563.

    Article  Google Scholar 

  • Maupin V., 2001. A multiple-scattering scheme for modelling surface wave propagation in isotropic and anisotropic three-dimensional structures. Geophys. J. Int., 146, 332–348.

    Article  Google Scholar 

  • McEvilly T.V., 1964. Central U.S. crust-upper mantle structure from Love and Rayleigh wave phase velocity inversion. Bull. Seism. Soc. Am., 54, 1997–2015.

    Article  Google Scholar 

  • Montagner J-P. and Nataf H.C., 1986. On inversion of the azimuthal anisotropy of surface waves. J. Geophys. Res., 91, 511–520.

    Article  Google Scholar 

  • Montagner J-P. and Tanimoto T., 1990. Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. J. Geophys. Res., 95, 4797–4819.

    Article  Google Scholar 

  • Nishimura C.L., and Forsyth D.W., 1989. The anisotropic structure of the upper mantle in the Pacific. Geophys. J. Int., 96, 203–229.

    Article  Google Scholar 

  • Park J., 1996. Surface waves in layered anisotropic structures. Geophys. J. Int., 126, 173–184.

    Article  Google Scholar 

  • Petterson O. and Maupin V., 2002. Lithospheric anisotropy on the Kergelen hotspot track inferred from Rayleigh wave polarization anomalies. Geophys. J. Int., 149, 225–246.

    Article  Google Scholar 

  • Smith M.L. and Dahlen F.A., 1973. The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. J. Geophys. Res., 78, 3321–3333.

    Article  Google Scholar 

  • Smith M.L. and Dahlen F.A., 1975. Correction to “The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium”. J. Geophys. Res., 80, 1923.

    Article  Google Scholar 

  • Suetsugu D. and Nakanishi I., 1987. Regional and azimuthal dependence of phase velocities of mantle Rayleigh waves in the Pacific ocean. Phys. Earth Planet. Int., 47, 230–245.

    Article  Google Scholar 

  • Tanimoto T. and Anderson D.L., 1985. Lateral heterogeneity and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s. J. Geophys. Res., 90, 1842–1858.

    Article  Google Scholar 

  • Thomson C.J., 1997. Modelling surface waves in anisotropic structures. 1. Theory. Phys. Earth Planet. Int., 103, 195–206.

    Article  Google Scholar 

  • Yu Y. and Park J., 1994. Hunting for azimuthal anisotropy beneath the Pacific Ocean region. J. Geophys. Res., 99, 15399–15422.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yanovskaya, T., Savina, L. Quasi-Rayleigh Waves in Transversely Isotropic Half-Space with Inclined Axis of Symmetry. Studia Geophysica et Geodaetica 48, 251–264 (2004). https://doi.org/10.1023/B:SGEG.0000015595.08489.ae

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SGEG.0000015595.08489.ae

Navigation