Skip to main content
Log in

Instability of Cryptic Plasmids in Strain Sinorhizobium meliloti P108 in the Course of Symbiosis with Alfalfa Medicago sativa

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Instability of cryptic plasmids in Sinorhizobium meliloti laboratory strains SXM1, DM7-R, and P108 as well as in their clones isolated from nodules of alfalfa grown during a long-term microvegetation experiment (120 days) was studied. The isolated clones of strains SXM1 and DM7-R manifested stable inheritance of plasmids, whereas 12.7–14.0% of clones with changed plasmid profile were detected in a population of clones from strain P108. These segregants were designated as P108c. Segregants P108c exhibited significantly decreased symbiotic effectiveness, nitrogenase activity, and the competitiveness with respect to alfalfa, compared to the original strain P108. It was established that a 80-kb deletion occurred in a larger of two cryptic plasmids (240 and 230 kb) of segregants P108c. It was concluded that genetic rearrangements are possible in rhizobial clones that did not undergo structural transformation and retained viability in the nodule during the natural vegetation period of alfalfa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Sadowsky, M.J. and Graham, P.H., Soil Biology of the Rhizobiaceae, The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria, Spaink, H.P., Kondorosi, A., and Hooykaas, P.J.J., Eds., Dordrecht: Kluwer Academic, 1998, pp. 155-167.

    Google Scholar 

  2. Hirsch, P.R., Population Dynamics of Indigenous and Genetically Modified Rhizobia in the Field, New Phytol., 1996, vol. 133, pp. 159-171.

    Google Scholar 

  3. Roumiantseva, M.L., Provorov, N.A., and Simarov, B.V., Role of the Host Plant in Formation of Population Structure of Rhizobium meliloti as Determined by Plasmid Content, Program and Abstracts of the VIII Eastern Europe Symp. on Biological Nitrogen Fixation, Saratov: NITROGENFIX-92, 1992, p. 53.

    Google Scholar 

  4. Belanger, C., Canfield, M.L., Moore, et al., Genetic Analysis of Nonpathogenic Agrobacterium tumefaciens Mutants Arising in Crown Gall Tumors, J. Bacteriol., 1995, vol. 177, pp. 3752-3757.

    Google Scholar 

  5. Luyten, E.L. and Vanderleyden, J., Survey of Genes Identified in Sinorhizobium meliloti spp., Necessary for the Development of an Efficient Symbiosis, Eur. J. Soil Biol., 2000, vol. 36, pp. 1-26.

    Google Scholar 

  6. Brewin, N.J., Tissue and Cell Invasion by Rhizobium: The Structure and Development of Infection Threads and Symbiosomes, The Rhizobiaceae: Molecular Biology of Model Plant-Associated Bacteria, Spaink, H.P., Kondorosi, A., and Hooykaas, P.J.J., Eds., Dordrecht: Kluwer Academic, 1998, pp. 417-428.

    Google Scholar 

  7. Krasil'nikov, N.A. and Melkumova, T.A., Variation of Nodule Bacteria in Legumes, Izv. Akad. Nauk SSSR, Ser. Biol., 1963, no. 5, pp. 693-706.

    Google Scholar 

  8. Broughton, W.J., Heycke, N., Priefer, U., et al., Ecological Genetics of Rhizobium meliloti: Diversity and Competitive Dominance, FEMS Microbiol. Lett., 1987, vol. 40, pp. 245-249.

    Google Scholar 

  9. Percuoco, S., Salzano, G., and Percuoco, G., Plasmids and Symbiotic Properties in Rhizobium leguminosarum Biovar viciae Field Isolates, Ann. Microbiol., 1990, vol. 40, pp. 141-154.

    Google Scholar 

  10. Surin, B.P. and Downie, J.A., Rhizobium leguminosarum Genes Required for Expression and Transfer of Host-Specific Nodulation, Plant Mol. Biol., 1989, vol. 12, pp. 19-29.

    Google Scholar 

  11. Wang, C.L., Beringer, J.E., and Hirsch, P.R., Host Plant Effect on Hybrids of Rhizobium leguminosarum Biovars viciae and trifolii, J. Gen. Microbiol., 1986, vol. 132, pp. 2063-2070.

    Google Scholar 

  12. Djordjevic, M.A., Zurkowski, W., and Rolfe, B.G., Sym Plasmid Transfer to Various Symbiotic Mutants of Rhizobium trifolii, R. leguminosarum and R. meliloti, J. Bacteriol., 1983, vol. 156, pp. 1035-1045.

    Google Scholar 

  13. Miksch, G. and Lentzsch, P., Expression and Stability of a Rhizobium leguminosarum bv. trifolii Sym Plasmid in R. meliloti and Agrobacterium tumefaciens and Its Effect on Clover-Bacterium Symbiosis, J. Basic. Microbiol., 1990, vol. 30, pp. 181-187.

    Google Scholar 

  14. Ollero, F.J., Espuny, M.R., Perez-Silva, J., et al., Behavior of a sym Plasmid from Rhizobium “hedysari” in Different Rhizobium Species, FEMS Microbiol. Ecol., 1991, vol. 6, pp. 131-138.

    Google Scholar 

  15. Galibert, F., Finan, T.M., Long, S.R., et al., The Composite Genome of the Legume Symbiont Sinorhizobium meliloti, Science, 2001, vol. 293, pp. 668-672.

    Google Scholar 

  16. Mercado-Blanco, J. and Toro, N., Plasmids in Rhizobia: The Role of Nonsymbiotic Plasmids, Mol. Plant-Microbe Iinteract., 1996, vol. 9, pp. 535-545.

    Google Scholar 

  17. Simon, R., Hoette, B., Klauke, B., et al., Isolation and Characterization of Insertion Sequence Elements from Gram-Negative Bacteria by Using New Broad-Host-Range, Positive Selection Vectors, J. Bacteriol., 1991, vol. 173, pp. 1502-1508.

    Google Scholar 

  18. Fedorov, S.N., Fokina, I.G., and Simarov, B.V., Evaluation of Symbiotic Properties of Alfalfa Nodule Bacteria Rhizobium meliloti under Laboratory Conditions, S-kh. Biol., 1986, no. 1, pp. 112-118.

    Google Scholar 

  19. Banfalvi, Z., Sakanyan, V., Koncz, C., et al., Location of Nodulation and Nitrogen Fixation Genes on a High-Molecular-Weight Plasmid of R. meliloti, Mol. Gen. Genet., 1981, vol. 184, pp. 318-325.

    Google Scholar 

  20. Beringer, J.E., R1 Transfer in Rhizobium leguminosarum, J. Gen. Microbiol., 1974, vol. 84, pp. 188-198.

    Google Scholar 

  21. Provorov, N.A. and Simarov, B.V., Genetic Variation in Alfalfa, Sweet Clover and Fenugreek for the Activity of Symbiosis with Rhizobium meliloti, Plant Breed., 1990, vol. 105, pp. 300-310.

    Google Scholar 

  22. Onishchuk, O.P., Sharypova, L.A., and Simarov, B.V., Isolation and Characterization of the Rhizobium meliloti Tn5-Mutants with Impaired Nodulation Competitiveness, Plant Soil, 1994, vol. 167, pp. 267-274.

    Google Scholar 

  23. Weaver, R.W., Stability of Plasmids in R. phaseoli during Culture, Soil Biol. Biochem., 1990, vol. 22, pp. 465-469.

    Google Scholar 

  24. Eckhardt, T., A Rapid Method for the Identification of Plasmid Deoxyribonucleic Acid in Bacteria, Plasmid, 1978, vol. 1, pp. 584-588.

    Google Scholar 

  25. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  26. Lakin, G.F., Biometriya (Biometrics), Moscow: Vysshaya Shkola, 1990.

    Google Scholar 

  27. Selbitschka, W. and Lotz, W., Instability of Cryptic Plasmids Affects the Symbiotic Effectivity of Rhizobium leguminosarum bv. viciae Strains, Mol. Plant-Microbe Interact., 1991, vol. 4, pp. 608-618.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roumiantseva, M.L., Andronov, E.E., Sagulenko, V.V. et al. Instability of Cryptic Plasmids in Strain Sinorhizobium meliloti P108 in the Course of Symbiosis with Alfalfa Medicago sativa . Russian Journal of Genetics 40, 356–362 (2004). https://doi.org/10.1023/B:RUGE.0000024971.91460.55

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000024971.91460.55

Keywords

Navigation