Skip to main content
Log in

Passage of a Young Indian Physical Chemist through the World of Photosynthesis Research at Urbana, Illinois, in the 1960s: A Personal Essay

  • Letter to the Editor
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In September 1963, I came to the famous Photosynthesis Laboratory of Eugene Rabinowitch (1901–1973) at the University of Illinois at Urbana, Illinois, after submitting my doctoral thesis, under Professor Pasupati Mukerjee, in physical chemistry, then at the Indian Association for the Cultivation of Science, Calcutta, India. I present here my personal impressions, my research and interactions at the then International Center of Photosynthesis at Urbana, Illinois. A brief mention is made of research of others at this center, my collaboration with Govindjee (Urbana) and with John Olson (at Brookhaven National Laboratory).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ainsworth S and Rabinowitch E (1960) Electron transfer and absorption spectra of complexes. Science 131:303

    CAS  PubMed  Google Scholar 

  • Arnon DI (1961) Cell-free photosynthesis and the energy conversion process. In: McElroy WD and Glass B (eds) Light and Life, pp 489–569. The Johns Hopkins Press, Baltimore, Maryland

    Google Scholar 

  • Bannister TT (1972) The careers and contributions of Eugene Rabinowitch. Biophys J 12: 707–718

    Google Scholar 

  • Bassham JA and Calvin M (1957) The Path of Carbon in Photosynthesis. Prentice Hall, Engelwood Cliffs, New Jersey

    Google Scholar 

  • Bedell G and Govindjee (1966) Quantum yield of oxygen evolution and the Emerson enhancement effect in deuterated Chlorella. Science 152: 1383–1385

    PubMed  Google Scholar 

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis.Blackwell Science, Oxford, UK

    Google Scholar 

  • Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950—1960. Photosynth Res 73: 127–132

    Article  Google Scholar 

  • Brody SS and Brody M (1961) Spectral characteristics of aggregated chlorophyll and its possible role in photosynthesis. Nature 19: 547–549

    Article  Google Scholar 

  • Cederstrand C and Govindjee (1966) Some properties of spinach chloroplast fractions obtained by digitonin solubilization. Biochim Biophys Acta 120: 177–180

    PubMed  CAS  Google Scholar 

  • Cederstrand C, Rabinowitch E and Govindjee (1966a) Analysis of the red absorption band of Chl a in vivo. Biochim Biophys Acta 126: 1–12

    PubMed  CAS  Google Scholar 

  • Cederstrand C, Rabinowitch E and Govindjee (1966b) Absorption and fluorescence spectra of spinach chloroplast fractions obtained by solvent extraction. Biochim Biophys Acta 120: 247–258

    PubMed  CAS  Google Scholar 

  • Cho F and Govindjee (1970a) Low-temperature (4—77 K) spectroscopy of Anacystis: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 151–161

    Article  PubMed  CAS  Google Scholar 

  • Cho F and Govindjee (1970b) Fluorescence spectra of Chlorella in the 295—77 K range. Biochim Biophys Acta 205: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Cho F and Govindjee (1970c) Low-temperature (4—77 K) spectroscopy of Chlorella: temperature dependence of energy transfer efficiency. Biochim Biophys Acta 216: 139–150

    Article  PubMed  CAS  Google Scholar 

  • Cho F, Spencer J and Govindjee (1966) Emission spectra of Chlorella at very low temperatures (-269°C to-196°C). Biochim Biophys Acta 126: 174–176

    PubMed  CAS  Google Scholar 

  • Das M and Govindjee (1967) A long-wave absorbing form of chlorophyll a responsible for the red drop in fluorescence at 298K and the F723 band at 77 K. Biochim Biophys Acta 143: 570–576

    Article  PubMed  CAS  Google Scholar 

  • Das M, Rabinowitch E, Szalay L and Papageorgiou G (1967) The 'sieve effect' in Chlorella suspensions. J Phys Chem 71: 3543–3549

    Article  CAS  Google Scholar 

  • Döring G, Renger G, Vater J and Witt HT (1969) Properties of photoactive chlorophyll aII in photosynthesis. Z Naturforsch 24b: 1139–1143

    Google Scholar 

  • Duysens LNM (1952) Transfer of excitation energy in photosynthesis.Thesis. State University at Utrecht, The Netherlands

    Google Scholar 

  • Förster Th (1948) Intermolecular energy migration and fluorescence.Ann Physik 2: 55–75 (English translation by R.S. Knox, Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627)

    Google Scholar 

  • Franck J and Rabinowitch E (1934) Some remarks about free radicals and the photochemistry of solutions. Trans Faraday Soc 30: 120–130

    Article  CAS  Google Scholar 

  • Frąckowiak D and Rabinowitch E (1966) The methylene blueferrous iron reaction in a two phase system. J Phys Chem 70: 3012–3017

    Google Scholar 

  • Fromme P and Mathis P (2004) Unraveling the Photosystem I reaction center: a history, or the sum of many efforts. Photosynth Res 80: 109–124 (this issue)

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK (1970) Study of the self-association of methylene blue from protonation equilibriums. J Am Chem Soc 92: 6415

    Article  CAS  Google Scholar 

  • Ghosh AK (1973) Energy transfer in dye-detergent micelles: a model for the separate package photosynthetic unit. Ind J Chem 11: 1014–1016

    CAS  Google Scholar 

  • Ghosh AK (1974a) Self association constant of methylene blue from the concentration dependence of the fluorescence efficiency. Curr Sci 43: 655–656

    CAS  Google Scholar 

  • Ghosh AK (1974b) Quenching of fluorescence of methylene blue by the dye dimer. Ind J Chem 12: 313–314

    CAS  Google Scholar 

  • Ghosh AK (1974c) Extinction coefficient of methylene blue monomer. Ind J Chem 12: 897

    CAS  Google Scholar 

  • Ghosh AK (1975) A new variation of Rabinowitch and Epstein's method of studying self-association of the dyes: dimerisation and trimerisation constants of methylene blue. Z Physik Chem (Frankfurt) 94: 161

    CAS  Google Scholar 

  • Ghosh AK and Govindjee (1966) Transfer of the excitation energy in Anacystis nidulans grown to obtain different pigment ratios.Biophys J 6: 611–619

    PubMed  CAS  Google Scholar 

  • Ghosh AK and Mukerjee P (1970a) Multiple association equilibria in the self-association of methylene blue and other dyes. J Am Chem Soc 92: 6408–6412

    Article  Google Scholar 

  • Ghosh AK and Mukerjee P (1970b) Ionic strength effects on the activity coefficient of methylene blue and its self-association. J Am Chem Soc 92: 6413–6415

    Article  Google Scholar 

  • Ghosh AK and Olson JM (1968) Effects of denaturants on the absorption spectrum of the bacteriochlorophyll-protein from the photosynthetic bacterium Chloropseudomonas ethylium. Biochim Biophys Acta 162: 135–148

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Govindjee, Crespi HL and Katz JJ (1966) Fluorescence studies on deuterated Chlorella vulgaris. Biochim Biophys Acta 120: 19–22

    PubMed  CAS  Google Scholar 

  • Ghosh AK, Broker TR and Olson JM (1968) A kinetic study of bacteriochlorophyll pheophytinization of the protein complex from a green photosynthetic organism. Biochim Biophys Acta 162: 402–413

    Article  PubMed  CAS  Google Scholar 

  • Govindjee (1963) Emerson enhancement effect and two light reactions in photosynthesis: dedicated to the memory of Late Professor Robert Emerson. In: Kok B and Jagendorf AT (eds) Photosynthetic Mechanisms of Green Plants Publication 1145, pp 318–334. Natl Acad Sci Natl Res Council Washington, DC

    Google Scholar 

  • Govindjee (1965) Fluorescence studies on algae, chloroplasts and chloroplast fragments. In: Thomas JB and Goedheer JC (eds) Currents in Photosynthesis, pp 93–103. Ad Donker Publisher, Rotterdam, The Netherlands

    Google Scholar 

  • Govindjee and Bazzaz M (1967) On the Emerson enhancement effect in the ferricyanide Hill reaction in chloroplast fragments. Photochem Photobiol 6: 885–894

    CAS  Google Scholar 

  • Govindjee and Govindjee R (1965) Two different manifestations of enhancement in the photosynthesis of Porphyridium cruentum in flashing monochromatic light. Photochem Photobiol 4: 401–415

    Google Scholar 

  • Govindjee and Rabinowitch E (1960) Two forms of Chl a in vivo with distinct photochemical functions. Science 132: 355–356

    PubMed  CAS  Google Scholar 

  • Govindjee and Yang L (1966) Structure of the red fluorescence band in chloroplasts. J Gen Physiol 49: 763–780

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Ichimura S, Cederstrand C and Rabinowitch E (1960) Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys 89: 322–323

    Article  PubMed  CAS  Google Scholar 

  • Govindjee, Döring G and Govindjee R (1970) The active chlorophyll a II in suspensions of lyophilized and tris-washed chloroplasts.Biochim Biophys Acta 205: 303–306

    Article  PubMed  CAS  Google Scholar 

  • Govindjee R, Thomas JB and Rabinowitch E (1960) Second Emerson effect in the Hill reaction of Chlorella cells with quinone as oxidant. Science 132: 421

    CAS  PubMed  Google Scholar 

  • Govindjee R, Govindjee and Hoch G (1964) Emerson enhancement effect in chloroplast reactions. Plant Physiol 39: 10–14

    PubMed  CAS  Google Scholar 

  • Govindjee R, Rabinowitch E and Govindjee (1968) Maximum quantum yield and action spectra of photosynthesis and fluorescence in Chlorella. Biochim Biophys Acta 162: 530–544

    Google Scholar 

  • Hill R and Whittingham CP (1955) Photosynthesis. Wiley, London

    Google Scholar 

  • Ichimura S and Rabinowitch E (1960) Chlorophyll-sensitized photoreduction in the thionine ferrous system. Science 131: 1314

    CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Sänger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5 Angstrom resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Ke B (2001) Photosynthesis: Photobiochemistry and Photobiophysics. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Kok B (1956) On the reversible absorption change at 705 nm in photosynthetic organisms. Biochim Biophys Acta 22: 399–401

    Article  PubMed  CAS  Google Scholar 

  • Krey A and Govindjee (1964) Fluorescence changes in Porphyridium exposed to green light of different intensity: a new emission band at 693m and its significance to photosynthesis.Proc Natl Acad Sci USA 52: 1568–1572

    Article  PubMed  CAS  Google Scholar 

  • Krey A and Govindjee (1966) Fluorescence studies on a red alga Porphyridium cruentum. Biochim Biophys Acta 120: 1–18

    PubMed  CAS  Google Scholar 

  • Mathai KG and Rabinowitch E (1962a) Studies of the thionine ferrous iron reaction in a heterogeneous system. J Phys Chem 66: 663–664

    CAS  Google Scholar 

  • Mathai KG and Rabinowitch E (1962b) The chlorophyll-sensitized photoreduction of thionine by ascorbic acid. J Phys Chem 66: 954–955

    CAS  Google Scholar 

  • Merkelo H, Hartman SR, Mar T, Singhal GS and Govindjee (1969) Mode locked lasers: measurements of very fast radiative decay in fluorescent systems. Science 164: 301–302

    PubMed  CAS  Google Scholar 

  • Mimuro M (2002) Visualization of excitation energy transfer processes in plants and algae. Photosynth Res 73: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Mukerjee P and Ghosh AK (1963) The effect of urea in methylene blue, its self association, and interaction with polyelectrolytes in aqueous solution. J Phys Chem 67: 193–195

    CAS  Google Scholar 

  • Mukerjee P and Ghosh AK (1970a) The 'isoextraction' method and the study of the self-association of methylene blue in aqueous solutions. J Am Chem Soc 92: 6403–6424

    Article  CAS  Google Scholar 

  • Mukerjee P and Ghosh AK (1970b) Thermodynamic aspects of self-association and hydrophobic bonding of methylene blue. Model system for stacking interactions. J Am Chem Soc 92: 6419–6424

    Article  CAS  Google Scholar 

  • Munday Jr JC and Govindjee (1969a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9: 1–21

    PubMed  CAS  Google Scholar 

  • Munday Jr JC and Govindjee (1969b) Light-induced changes in the fluorescence yield of chlorophyll a in vivo IV. The effect of preillumination on the fluorescence transient of Chlorella pyrenoidosa. Biophys J 9: 22–35

    PubMed  CAS  Google Scholar 

  • Murty NR and Rabinowitch E (1964) Intermolecular quenching of higher excited states. J Chem Phys 41: 602–603

    Article  Google Scholar 

  • Murty NR and Rabinowitch E (1965) Fluorescence decay studies of chlorophyll a in vivo.Biophys J 5: 655–661

    PubMed  CAS  Google Scholar 

  • Nelson N and Ben-Shem A (2002) Photosystem I reaction center: past and future. Photosynth Res 73: 193–206

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou G and Govindjee (1967) Changes in intensity and spectral distribution of fluorescence. Effect of light pretreatment on normal and DCMU-poisoned Anacystis nidulans. Biophys J 7: 375–390

    PubMed  CAS  Google Scholar 

  • Papageorgiou G and Govindjee (1968a) Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. Biophys J 8: 1299–1315

    PubMed  CAS  Google Scholar 

  • Papageorgiou G and Govindjee (1968b). Light-induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. Biophys J 8: 1316–1328

    PubMed  CAS  Google Scholar 

  • Pearlstein RM (2002) Photosynthetic exciton theory in the 1960s. Photosynth Res 73: 119–126

    Article  PubMed  CAS  Google Scholar 

  • Porret D and Rabinowitch E (1937) Reversible bleaching of chlorophyll. Nature 140: 321

    CAS  Google Scholar 

  • Rabinowitch E (1940a) The photogalvanic effect. I. The photochemical properties of the thionine—iron system. J Chem Phys 8: 551–559

    Article  CAS  Google Scholar 

  • Rabinowitch E (1940b) The photogalvanic effect. II. The photogalvanic properties of the thionine—iron system. J Chem Phys 8: 560–566

    Article  CAS  Google Scholar 

  • Rabinowitch E (1945) Photosynthesis and Related Processes, Volume I. Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch E (1951) Photosynthesis and Related Processes, Volume II (Part 1). Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch E (1956) Photosynthesis and Related Processes, Volume II (Part 2). Interscience Publishers, New York

    Google Scholar 

  • Rabinowitch E (1959) Robert Emerson, obituary. Plant Physiol 34: 179–184

    Google Scholar 

  • Rabinowitch E and Epstein LF (1941) Polymerization of dyestuffs in solution; thionine and methylene blue. J Am Chem Soc 63: 69–78

    Article  CAS  Google Scholar 

  • Rabinowitch E and Govindjee (1965) The role of chlorophyll in photosynthesis. Sci Am 213: 74–83

    Article  PubMed  CAS  Google Scholar 

  • Rabinowitch E and Weiss J (1936) Reversible oxidation and reduction of chlorophyll. Nature 138: 1098–1099

    CAS  Google Scholar 

  • Rabinowitch E and Weiss J (1937) Reversible oxidation of chlorophyll. Proc R Soc London Ser A 162: 251–267

    CAS  Google Scholar 

  • Rubinstein D and Rabinowitch E (1963) Fluorescence and absorption changes in Chlorella exposed to strong light: the red band. Science 142: 681–682

    PubMed  Google Scholar 

  • Satoh K (2003) The identification of the Photosystem II reaction center: a personal story. Photosynth Res 76: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Seibert M and Wasielewski M (2003) The isolated Photosystem II reaction center: first attempts to directly measure the kinetics of primary charge separation. Photosynth Res 76: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Singhal GS and Rabinowitch E (1967) Changes in the absorption spectrum of methylene blue with pH. J Phys Chem 71: 3347–3349

    Article  CAS  Google Scholar 

  • Singhal GS and Rabinowitch E (1969) Measurement of the fluorescence lifetime of chlorophyll a in vivo. Biophys J 9: 586–591

    PubMed  CAS  Google Scholar 

  • Singhal GS and Rabinowitch E (1970) Photochemical reduction of thionine and other thiazine dyes by Co(II) EDTA complex in a heterogeneous system. J Chem Phys 53: 4109–4110

    Article  CAS  Google Scholar 

  • Singhal GS, Hevesi J and Rabinowitch E (1968a) Excitation—energy migration between chlorophyll and b-carotene. J Chem Phys 49: 5206–5208

    Article  CAS  Google Scholar 

  • Singhal GS, Williams WP and Rabinowitch E (1968b) Fluorescence and absorption studies on chlorophyll a in vitro at 77 K. J Phys Chem 72: 3941–3951

    Article  CAS  Google Scholar 

  • Singhal GS, Rabinowitch E, Hevesi J and Srinivasan V (1970) Migration of excitation energy from thionine to methylene blue in micelles. Photochem Photobiol 11: 531–545

    PubMed  CAS  Google Scholar 

  • Srinivasan V and Rabinowitch E (1970) Photochemical reduction of thionine by cobalt (II) EDTA complex in water—ether emulsion. J Chem Phys 52: 1165–1168

    Article  CAS  Google Scholar 

  • Szalay L, Rabinowitch E, Murty N and Govindjee (1967) Relationship between the absorption and emission spectra and the 'red drop' in the action spectra of fluorescence in vivo. Biophys J 7: 137–149

    Article  CAS  PubMed  Google Scholar 

  • Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes: early observations. Photosynth Res 76: 197–205

    Article  CAS  Google Scholar 

  • Tomita G and Rabinowitch E (1962) Excitation energy transfer between pigments in photosynthetic cells. Biophys J 2: 483–499

    Google Scholar 

  • Vernon LP (2003) Photosynthesis and the Charles F. Kettering research laboratory. Photosynth Res 76: 379–388

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8 Angstrom resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, A.K. Passage of a Young Indian Physical Chemist through the World of Photosynthesis Research at Urbana, Illinois, in the 1960s: A Personal Essay. Photosynthesis Research 80, 427–437 (2004). https://doi.org/10.1023/B:PRES.0000030765.62805.fb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PRES.0000030765.62805.fb

Navigation