Skip to main content
Log in

Identification of Signals Required for Import of the Soybean FAd Subunit of ATP Synthase into Mitochondria

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The requirements for protein import into mitochondria was investigated by using the targeting signal of the FAd subunit of soybean mitochondrial ATP synthase attached to two different passenger proteins, its native passenger and soybean alternative oxidase. Both passenger proteins are soybean mitochondrial proteins. Changing hydrophobic residues at positions −24:25 (Phe:Leu), −18:19 (Ile:Leu) and −12:13 (Leu:Ile) of the 31 amino acid cleavable presequence gave more than 50% inhibition of import with both passenger proteins. Some other residues in the targeting signal played a more significant role in targeting of one passenger protein compared to another. Notably changing positive residues (Arg, Lys) had a greater inhibitory affect on import with the native passenger protein, i.e. greater inhibition of import with FAd mature protein was observed compared to when alternative oxidase was the mature protein. When using chimeric passenger proteins it was shown that the nature of the mature protein can greatly affect the targeting properties of the presequence. In vivo investigations of the targeting presequence indicated that the presequence of 31 amino acids could not support import of GFP as a passenger protein. However, fusion of the full-length FAd coding sequence to GFP did result in mitochondrial localisation of GFP. Using the latter fusion we confirmed the critical role of hydrophobic residues at positions −24:25 and −18:19. These results support the proposal that core mitochondrial targeting features exist in all presequences, but that additional features exist. These features may not be evident with all passenger proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T. and Kohda, D. 2000. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100: 551–560.

    Google Scholar 

  • Ambard-Bretteville, F., Small, I., Grandjean, O. and Colas des Francs-Small, C. 2003. Discrete mutations in the presequence of potato formate dehydrogenase inhibit the in vivo targeting of GFP fusions into mitochondria. Biochem. Biophys. Res. Commun. 311: 966–971.

    Google Scholar 

  • Bhushan, S., Lefebvre, B., Stahl, A., Wright, S.J., Bruce, B.D., Boutry, M. and Glaser, E. 2003. Dual targeting and function of a protease in mitochondria and chloroplasts. EMBO Rep. 4: 1073–1078.

    Google Scholar 

  • Braun, H.P. and Schmitz, U.K. 1999. The protein-import apparatus of plant mitochondria. Planta 209: 267–274.

    Google Scholar 

  • Chew, O., Rudhe, C., Glaser, E. and Whelan, J. 2003a. Characterisation of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol. Biol. 53: 341–356.

    Google Scholar 

  • Chew, O. and Whelan, J. 2003. Dual targeting ability of targeting signals is dependent on the nature of the mature protein. Funct. Plant Biol. 30: 805–812.

    Google Scholar 

  • Chew, O., Whelan, J. and Millar, A.H. 2003b. Molecular de.nition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J. Biol. Chem. 278: 46869–46877.

    Google Scholar 

  • Chiu, W., Niwa, Y., Zeng, W., Hirano, T., Kobayashi, H. and Sheen, J. 1996. Engineered GFP as a vital reporter in plants. Curr. Biol. 6: 325–330.

    Google Scholar 

  • Chu, T.W., Grant, P.M. and Strauss, A.W. 1987. The role of arginine residues in the rat mitochondrial malate dehydrogenase transit peptide. J. Biol. Chem. 262: 12806–12811.

    Google Scholar 

  • Daley, D.O., Adams, K.L., Clifton, R., Qualmann, S., Millar, A.H., Palmer, J.D., Pratje, E. and Whelan, J. 2002. Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant J. 30: 11–21.

    Google Scholar 

  • Day, D.A., Neuburger, M. and Douce, R. 1985. Biochemical characterization of chlorophyll-free mitochondria from pea leaves. Aust. J. Plant Physiol. 12: 219–228.

    Google Scholar 

  • Dessi, P., Pavlov, P.F., Wallberg, F., Rudhe, C., Brack, S., Whelan, J. and Glaser, E. 2003. Investigations on the in vitro import ability of mitochondrial precursor proteins synthesized in wheat germ transcription-translation extract. Plant Mol. Biol. 52: 259–271.

    Google Scholar 

  • Dessi, P., Smith, M.K., Day, D.A. and Whelan, J. 1996. Characterization of the import pathway of the FAd subunit of mitochondrial ATP synthase into isolated plant mitochondria. Arch. Biochem. Biophys. 335: 358–368.

    Google Scholar 

  • Duby, G., Oufattole, M. and Boutry, M. 2001. Hydrophobic residues within the predicted N-terminal amphiphilic α-helix of a plant mitochondrial targeting presequence play a major role in in vivo import. Plant J. 27: 539–549.

    Google Scholar 

  • Emr, S.D., Vassarotti, A., Garrett, J., Geller, B.L., Takeda, M. and Douglas, M.G. 1986. The amino terminus of the yeast F1-ATPase β-subunit precursor functions as a mitochondrial import signal. J. Cell. Biol. 102: 523–533.

    Google Scholar 

  • Hammen, P.K., Waltner, M., Hahnemann, B., Heard, T.S. and Weiner, H. 1996. The role of positive charges and structural segments in the presequence of rat liver aldehyde dehydrogenase in import into mitochondria. J. Biol. Chem. 271: 21041–21048.

    Google Scholar 

  • Hanson, M.R. and Kohler, R.H. 2001. GFP imaging: methodology and application to investigate cellular compartmentation in plants. J. Exp. Bot. 52: 529–539.

    Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.

    Google Scholar 

  • Heazlewood, J.L., Tonti-Filippini, J.S., Gout, A.M., Day, D.A., Whelan, J. and Millar, A.H. 2004. Experimental analysis of the Arabidopsis mitochondrial proteome highlights signaling and regulatory components, provides assessment of targeting prediction programs, and indicates plant-specific mitochondrial proteins. Plant Cell 16: 241–256.

    Google Scholar 

  • Huang, S., Ratli., K.S. and Matouschek, A. 2002. Protein unfolding by the mitochondrial membrane potential. Nature Struct. Biol. 9: 301–307.

    Google Scholar 

  • Kubo, N., Arimura, S., Tsutsumi, N., Hirai, A. and Kadowaki, K. 2003. Involvement of N-terminal region in mitochondrial targeting of rice RPS10 and RPS14 proteins. Plant Sci. 164: 1047–1055.

    Google Scholar 

  • Lister, R., Murcha, M.W. and Whelan, J. 2003. The mitochondrial protein import machinery of plants (MPIMP) database. Nucl. Acids Res. 31: 325–327.

    Google Scholar 

  • Logan, D.C., Scott, I. and Tobin, A.K. 2003. The genetic control of plant mitochondrial morphology and dynamics. Plant J. 36: 500–509.

    Google Scholar 

  • Mackenzie, S. and McIntosh, L. 1999. Higher plant mitochondria. Plant Cell 11: 571–586.

    Google Scholar 

  • Muto, T., Obita, T., Abe, Y., Shodai, T., Endo, T. and Kohda, D. 2001. NMR identification of the Tom20 binding segment in mitochondrial presequences. J. Mol. Biol. 306: 137–143.

    Google Scholar 

  • Neupert, W. 1997. Protein import into mitochondria. Annu. Rev. Biochem. 66: 863–917.

    Google Scholar 

  • Neupert, W. and Brunner, M. 2002. The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol. 3: 555–565.

    Google Scholar 

  • Nishi, T., Nagashima, F., Tanase, S., Fukumoto, Y., Joh, T., Shimada, K., Matsukado, Y., Ushio, Y. and Morino, Y. 1989. Import and processing of precursor to mitochondrial asparate aminotransferase: structure-function relationships of the presequence. J. Biol. Chem. 264: 6044–6051.

    Google Scholar 

  • Pfanner, N., Mueller, H.K., Harmey, M.A. and Neupert, W. 1987. Mitochondrial protein import involvement of the mature part of a cleavable precursor protein in the binding to receptor sites. EMBO J. 6: 3449–3454.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schleiff, E., Motzkus, M. and Soll, J. 2002a. Chloroplast protein import inhibition by a soluble factor from wheat germ lysate. Plant Mol. Biol. 50: 177–185.

    Google Scholar 

  • Schleiff, E., Soll, J., Sveshnikova, N., Tien, R., Wright, S., Dabney-Smith, C., Subramanian, C. and Bruce, B.D. 2002b. Structural and guanosine triphosphate/diphosphate requirements for transit peptide recognition by the cytosolic domain of the chloroplast outer envelope receptor, Toc34. Biochemistry 41: 1934–1946.

    Google Scholar 

  • Smith, M.K., Day, D.A. and Whelan, J. 1994. Isolation of a novel soybean gene encoding a mitochondrial ATP synthase subunit. Arch. Biochem. Biophys. 313: 235–240.

    Google Scholar 

  • Sztul, E.S., Hendrick, J.P., Kraus, J.P., Wall, D., Kalousek, F. and Rosenberg, L.E. 1987. Import of rat ornithine transcarbamylase precursor into mitochondria: two-step processing of the leader peptide. J. Cell Biol. 105: 2631–2369.

    Google Scholar 

  • Tanudji, M., Dessi, P., Murcha, M. and Whelan, J. 2001. Protein import into plant mitochondria: precursor proteins di.er in ATP and membrane potential requirements. Plant Mol. Biol. 45: 317–325.

    Google Scholar 

  • Tanudji, M., Sjoling, S., Glaser, E. and Whelan, J. 1999. Signals required for the import and processing of the alternative oxidase into mitochondria. J. Biol. Chem. 274: 1286–1293.

    Google Scholar 

  • Unseld, M., Marienfeld, J.R., Brandt, P. and Brennicke, A. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genet. 15: 57–61.

    Google Scholar 

  • van Steeg, H., Oudshoorn, P., van Hell, B., Polman, J.E. and Grivell, L.A. 1986. Targeting e.ciency of a mitochondrial pre-sequence is dependent on the passenger protein. EMBO J. 5: 3643–3650.

    Google Scholar 

  • Wachter, C., Schatz, G. and Glick, B.S. 1994. Protein import into mitochondria: the requirement for external ATP is precursor-specific whereas intramitochondrial ATP is universally needed for translocation into the matrix. Mol. Biol. Cell 5: 465–474.

    Google Scholar 

  • Waltner, M., Hammen, P.K. and Weiner, H. 1996. Influence of the mature portion of a precursor protein on the mitochondrial signal sequence. J. Biol. Chem. 271: 21226–21230.

    Google Scholar 

  • Werhahn, W., Niemeyer, A., Jansch, L., Kruft, V., Schmitz, U.K. and Braun, H. 2001. Purification and characterization of the preprotein translocase of the outer mitochondrial membrane from Arabidopsis. Identification of multiple forms of TOM20. Plant Physiol. 125: 943–954.

    Google Scholar 

  • Whelan, J., McIntosh, L. and Day, D.A. 1993. Sequencing of a soybean alternative oxidase cDNA clone. Plant Physiol. 103: 1481.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Whelan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, MN., Whelan, J. Identification of Signals Required for Import of the Soybean FAd Subunit of ATP Synthase into Mitochondria. Plant Mol Biol 54, 193–203 (2004). https://doi.org/10.1023/B:PLAN.0000028787.36766.80

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000028787.36766.80

Navigation