Skip to main content
Log in

The 5′ UTR negatively regulates quantitative and spatial expression from the ABI3 promoter

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The involvement of transcription factors Arabidopsis abscisic acid-insensitive3 (ABI3), maize viviparous1 (VP1) and Phaseolus vulgaris ABI3-like factor (PvALF) in the spatial control of storage protein gene expression is well established. However, little insight exists as to how they are themselves regulated. To address this, a 5.15 kb ABI3 upstream sequence including a 4.6 kb full-length promoter and 519 bp of 5′-untranslated region (UTR) was used to drive either β-glucuronidase (GUS) or green fluorescent protein (GFP) expression in Arabidopsis. Expression from the full-length (−4630/+519ABI3) and various 5′-truncated promoters was detected during embryogenesis in all lines, except those transgenic for promoter elements shorter than 364 bp. Two upstream activating regions, −3600 to −2033 and −2033 to −882, enhanced GUS expression in seeds. The −882 to −364 region was sufficient to confer seed-specific expression of GUS when fused to a −64/+6CaMV 35S minimal promoter. Expression from the ABI3 promoter constructs was seed-specific, except in the presence of exogenous abscisic acid (ABA) (>0.3 μM), when GUS expression was detected in seedling roots. Excision of a 405 bp region containing three upstream open reading frames (uORFs) from the 5′-UTR dramatically increased GUS expression and debilitated constraint of reporter expression in roots. Negative regulation of ABI3 expression by the 5′-UTR may involve a post-transcriptional mechanism analogous to that of tumor suppressor genes which also bear long, uORF-containing, 5′-UTRs, or through interactions with RNA-binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechtold, N. and Pelletier, G. 1998. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Meth. Mol. Biol. 82: 259–266.

    Google Scholar 

  • Bobb, A.J., Eiben, H.G. and Bustos, M.M. 1995. PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J. 8: 331–343.

    Google Scholar 

  • Bonetta, D. and McCourt, P. 1998. Genetic analysis of ABA signal transduction pathways. Trends Plant Sci. 3: 231–235.

    Google Scholar 

  • Brady, S.M., Sarkar, S.F., Boenetta, D. and McCourt, P. 2003. The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34: 67–75.

    Google Scholar 

  • Bustos, M.M., Begum, D., Kalkan, F.A., Battraw, M.J. and Hall, T.C. 1991. Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. EMBO J. 10: 1469–1479.

    Google Scholar 

  • Chandrasekharan, M.B., Bishop, K.J. and Hall, T.C. 2003a. Module-specific regulation of the β-phaseolin promoter during embryogenesis. Plant J. 3: 853–866.

    Google Scholar 

  • Chandrasekharan, M.B., Li, G., Bishop, K.J. and Hall, T.C. 2003b. S phase progression is required for transcriptional activation of the β-phaseolin promoter. J. Biol. Chem. 278: 45397–45405.

    Google Scholar 

  • Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S. and McCourt, P. 1996. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273: 1239–1241.

    Google Scholar 

  • Devic, M., Albert, S. and Delseny, M. 1996. Induction and expression of seed-specific promoters in Arabidopsis embryo-defective mutants. Plant J. 9: 205–215.

    Google Scholar 

  • Frisch, D.A., van der Geest, A.H.M., Dias, K. and Hall, T.C. 1995. Chromosomal integration is required for spatial regulation of expression from the β-phaseolin promoter. Plant J. 7: 503–512.

    Google Scholar 

  • Giraudat, J. 1995. Abscisic acid signaling. Curr. Opin. Cell Biol. 7: 232–238.

    Google Scholar 

  • Giraudat, J., Hauge, B.M., Valon, C., Smalle, J., Parcy, F. and Goodman, H.M. 1992. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4: 1251–1261.

    Google Scholar 

  • Goldberg, R.B., de Paiva, G. and Yadegari, R. 1994. Plant embryogenesis: zygote to seed. Science 266: 605–614.

    Google Scholar 

  • Gorlich, D., Kraft, R., Kostka, S., Vogel, F., Hartmann, E., Laskey, R.A., Mattaj, I.W. and Izaurraide, E. 1996. Importin provides a link between nuclear protein import and U snRNA export. Cell 87: 21–32.

    Google Scholar 

  • Han, B., Dong, Z., Liu, Y., Chen, Q., Hashimoto, K. and Zhang, J.T. 2003. Regulation of constitutive expression of mouse PTEN by the 5′-untranslated region. Oncogene 22: 5325–5337.

    Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.

    Google Scholar 

  • Hoecker, U., Vasil, I.K. and McCarty, D.R. 1995. Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev. 9: 2459–2469.

    Google Scholar 

  • Holdsworth, M., Kurup, S. and McKibbin, R. 1999. Molecular and genetic mechanisms regulating the transition from embryo development to germination. Trends Plant Sci. 4: 275–280.

    Google Scholar 

  • Hugouvieux, V., Kwak, J.M. and Schroeder, J.I. 2001. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell 106: 477–487.

    Google Scholar 

  • Ishigaki, Y., Li, X., Serin, G. and Maquat, L.E. 2001. Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106: 607–617.

    Google Scholar 

  • Izaurralde, E., Lewis, J., McGuigan, C., Jankowska, M., Darzynkiewicz, E. and Mattaj, I.W. 1994. A nuclear cap binding protein complex involved in pre-mRNA splicing. Cell 78: 657–668.

    Google Scholar 

  • Jefferson, R.A., Kavanagh, T.A. and Bevan, M.W. 1987. GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.

    Google Scholar 

  • Kebaara, B., Nazarenus, T., Taylor, R., Forch, A. and Atkin, A.L. 2003. The Upf-dependent decay of wild-type PPR1 mRNA depends on its 5′-UTR and first 92 ORF nucleotides. Nucl. Acids Res. 31: 3157–3165.

    Google Scholar 

  • Kozak, M. 1987. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucl. Acids Res. 15: 8125–8148.

    Google Scholar 

  • Kozak, M. 1991. An analysis of vertebrate mRNA sequences: intimations of translational control. J. Cell Biol. 115: 887–903.

    Google Scholar 

  • Li, G., Bishop, K.J., Chandrasekharan, M.B. and Hall, T.C. 1999. β-phaseolin gene activation is a two-step process: PvALF facilitated chromatin modification followed by abscisic acid-mediated gene activation. Proc. Natl. Acad. Sci. USA 96: 7104–7109.

    Google Scholar 

  • Li, G., Chandler, S.P., Wolffe, A.P. and Hall, T.C. 1998. Architectural specificity in chromatin structure at the TATA box in vivo: nucleosome displacement upon β-phaseolin gene activation. Proc. Natl. Acad. Sci. USA 95: 4772–4777.

    Google Scholar 

  • Li, G., Chandrasekharan, M.B., Wolffe, A.P. and Hall, T.C. 2001. Chromatin structure and phaseolin gene regulation. Plant Mol. Biol. 46: 121–129.

    Google Scholar 

  • Li, J., Kinoshita, T., Pandey, S., Ng, C.K., Gygi, S.P., Shimazaki, K. and Assmann, S.M. 2002. Modulation of an RNA-binding protein by abscisic-acid-activated protein kinase. Nature 418: 793–797.

    Google Scholar 

  • Locatelli, F., Magnani, E., Vighi, C., Lanzanova, C. and Coraggio, I. 2002. Inhibitory effect of myb7 uORF on downstream gene expression in homologous (rice) and heterologous (tobacco) systems. Plant Mol. Biol. 48: 309–318.

    Google Scholar 

  • Lu, C. and Fedoroff, N. 2000. A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12: 2351–2366.

    Google Scholar 

  • Lu, C., Han, M.H., Guevara-Garcia, A. and Fedoroff, N.V. 2002. Mitogen-activated protein kinase signaling in postgermination arrest of development by abscisic acid. Proc. Natl. Acad. Sci. USA 99: 15812–15817.

    Google Scholar 

  • McCarty, D.R., Hattori, T., Carson, C.B., Vasil, V., Lazar, M. and Vasil, I.K. 1991. The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66: 895–905.

    Google Scholar 

  • Meinke, D.W. 1995. Molecular genetics of plant embryogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 369–394.

    Google Scholar 

  • Merlot, S. and Giraudat, J. 1997. Genetic analysis of abscisic acid signal transduction. Plant Physiol. 114: 751–757.

    Google Scholar 

  • Nambara, E., Keith, K., McCourt, P. and Naito, S. 1995. A regulatory role for the ABI3 gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121: 629–636.

    Google Scholar 

  • Niepel, M., Ling, J. and Gallie, D.R. 1999. Secondary structure in the 5′-leader or 3′-untranslated region reduces protein yield but does not affect the functional interaction between the 5′-cap and the poly(A) tail. FEBS Lett. 462: 79–84.

    Google Scholar 

  • Oliveira, C.C. and McCarthy, E.G. 1995. The relationship between eukaryotic translation and mRNA stability. A short upstream open reading frame strongly inhibits translational initiation and greatly accelerates mRNA degradation in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 270: 8936–8943.

    Google Scholar 

  • Parcy, F., Valon, C., Raynal, M., Gaubier-Comella, P., Delseny, M. and Giraudat, J. 1994. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6: 1567–1582.

    Google Scholar 

  • Pelletier, J. and Sonenberg, N. 1985. Insertion mutagenesis to increase secondary structure within the 5′ noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 40: 515–526.

    Google Scholar 

  • Pepper, A., Delaney, T., Washburn, T., Poole, D. and Chory, J. 1994. DET1, a negative regulator of light-mediated development and gene expression in arabidopsis, encodes a novel nuclear-localized protein. Cell 78: 109–116.

    Google Scholar 

  • Perez-Grau, L. and Goldberg, R.B. 1989. Soybean seed protein genes are regulated spatially during embryogenesis. Plant Cell 1: 1095–1109.

    Google Scholar 

  • Petracek, M.E., Nuygen, T., Thompson,W.F. and Dickey, L.F. 2000. Premature termination codons destabilize ferredoxin-1 mRNA when ferredoxin-1 is translated. Plant J. 21: 563–569.

    Google Scholar 

  • Rock, C.D. 2000. Pathways to abscisic acid-regulated gene expression. New Phytol. 148: 357–396.

    Google Scholar 

  • Rohde, A., De Rycke, R., Beeckman, T., Engler, G., Van Montagu, M. and Boerjan, W. 2000a. ABI3 affects plastid differentiation in dark-grown Arabidopsis seedlings. Plant Cell 12: 35–52.

    Google Scholar 

  • Rohde, A., Kurup, S. and Holdsworth, M. 2000b. ABI3 emerges from the seed. Trends Plant Sci. 5: 418–419.

    Google Scholar 

  • Rohde, A., Van Montagu, M. and Boerjan, W. 1999. The ABSCISIC ACID-INSENSITIVE 3 (ABI3) gene is expressed during vegetative quiescence processes in Arabidopsis. Plant Cell Environ. 22: 261–270.

    Google Scholar 

  • Rouster, J., Leah, R., Mundy, J. and Cameron-Mills, V. 1997. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 11: 513–523.

    Google Scholar 

  • Sheen, J. 1998. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc. Natl. Acad. Sci. USA 95: 975–980.

    Google Scholar 

  • van der Geest, A.H. and Hall, T.C. 1996. A 68 bp element of the β-phaseolin promoter functions as a seed-specific enhancer. Plant Mol. Biol. 32: 579–588.

    Google Scholar 

  • Wang, L. and Wessler, S.R. 1998. Inefficient reinitiation is responsible for upstream open reading frame-mediated translational repression of the maize R gene. Plant Cell 10: 1733–1746.

    Google Scholar 

  • Wang, L. and Wessler, S.R. 2001. Role of mRNA secondary structure in translational repression of the maize transcriptional activator Lc(1,2). Plant Physiol. 125: 1380–1387.

    Google Scholar 

  • Xiang, C., Han, P., Lutziger, I., Wang, K. and Oliver, D.J. 1999. A mini binary vector series for plant transformation. Plant Mol. Biol. 40: 711–717.

    Google Scholar 

  • Xiong, L., Gong, Z., Rock, C.D., Subramanian, S., Guo, Y., Xu, W., Galbraith, D. and Zhu, J.K. 2001a. Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Dev. Cell 1: 771–781.

    Google Scholar 

  • Xiong, L., Lee, B., Ishitani, M., Lee, H., Zhang, C. and Zhu, J. 2001b. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev. 15: 1971–1984.

    Google Scholar 

  • Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucl. Acids Res. 31: 3406–3415.

    Google Scholar 

  • Zuo, J., Niu, Q.W. and Chua, N.H. 2000. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24: 265–273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy C. Hall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ng, D.WK., Chandrasekharan, M.B. & Hall, T.C. The 5′ UTR negatively regulates quantitative and spatial expression from the ABI3 promoter. Plant Mol Biol 54, 25–38 (2004). https://doi.org/10.1023/B:PLAN.0000028767.06820.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000028767.06820.34

Navigation