Skip to main content
Log in

Peroxidase stability related to its calcium and glycans

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Peroxidases are known to be very stable enzymes. The reasons for such have not yet been fully investigated. Cationic peroxidase from cultured peanut peroxidase can be obtained in substantial amounts and can easily be purified. It is thus an ideal enzyme for study. Through immunological assays its site in the cell has been found and a function determined. With crystals and X-ray diffraction thereof, a 3-D structure of the protein is available. The sites of the heme as well as the 2 calcium ions have been located. With the cDNA it was possible to determine the sites for three glycan chains on the protein. Good progress is being made on the elucidation of the structure of these glycan chains. While both calcium and glycans influence the stability of the protein, the search for how the glycans control the folding pattern is harder than to define the role of calcium. Site-directed mutagenesis has been carried out in each of the three binding sites in turn to determine the role of each glycan. Further work with Mass Spectroscopy. using Electron Spin Ionization tandem Mass Spectroscopy (ESI MS/MS) is underway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal PK (1992) NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry 31: 3307–3330.

    Google Scholar 

  • Alper J (2003) Glycobiology: Turning sweet on cancer. Science 301: 159–160.

    Google Scholar 

  • Ashford D, Dwek RA, Welply JK, Amatayakul S, Homans SW, Lis H, Taylor GN, Sharon N & Rademacher TW (1987) The β1–2-xylose and α 1–3-L-fucose substituted N-linked oligosaccharides from Erythrina cristagalli lectin: Isolation, characterization and comparison with other legume lectins. Eur. J. Biochem. 166: 311–320.

    Google Scholar 

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Ebers I, Stevens LH, Jord W, Lommen A, Faye L, Lerouge P & Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc. Natl. Acad. USA. 98: 2899–2904.

    Google Scholar 

  • Balestrini R, Hahn MG, Faccio A, Medgen K & Bonfante P (1996) Differential localization of carbohydrate epitopes in plant cell walls in the presence and absence of arbuscular mycorrhizal fungi. Plant Physiol. 111: 203–209.

    Google Scholar 

  • Ban N, van Huystee RB, Day J, Greenwood A, Larson S, Esnault R & McPherson A (1992) Preliminary crystallographic study of peanut peroxidase. Acta Cryst. B48: 109–111.

    Google Scholar 

  • Barber KR, Roderiguez Maranon MJ, Shaw GS & van Huystee RB (1995) Structural influence of calcium on the heme cavity of the cationic peanut peroxidase as determined by 1 H-NMR spectroscopy. Eur. J. Biochem. 232: 825–833.

    Google Scholar 

  • Barr JR, Anumula KR, Vettese MB, Taylor PB & Carr SA (1991) Structural classification of carbohydrates in glycoproteins by mass spectrometry and high performance anion-exchange chromatography. Anal. Bioch. 192: 181–192.

    Google Scholar 

  • Baussant T, Strecker G, Wieruszeski J-M, Montreuil J & Michalski JC (1986) Catabolism of glycoprotein glycans: Characterization of lysosomal endo-N-actyl-β-D-glucosaminidase specific for glycans with a terminal chitobiose residue. Eur. J. Biochem. 159: 381–385.

    Google Scholar 

  • Bause E (1983) Structural requirements of N-glycosylation of proteins. Studies with proline peptides as conformational probes. Biochem. J. 209: 331–339.

    Google Scholar 

  • Borisjuk NV, Borisjuk LG, Logendra S, Petersen F, Gleba Y & Raskin I (1999) Production of recombinant proteins in plant root exudate. Nature Biotechnol. 17: 466–469.

    Google Scholar 

  • Bowles DJ & Pappin DJ (1988) Traffic and assembly of con-canavaline A. TIBS 13: 60–65.

    Google Scholar 

  • Brewin NJ, Robertson JG, Wood EA, Wells B, Larkins AP, Galfre G & Butcher GW (1985) Monoclonal antibodies to antigens in peribacteroid menbrane from Rhizobium-induced root nodules of pea cross-react with plasma membranes and Golgi bodies. EMBO J. 4: 605–613.

    Google Scholar 

  • Buffard D, Breda C, van Huystee RB, Asemota O, Pierre M, Dang Ha DB & Esnault R (1990) Molecular cloning of complementary DNAs encoding two cationic peroxidases from cultivated peanut cells. Proc. Natl. Acad. Sci. USA 87: 8874–8878.

    Google Scholar 

  • Chibbar RN & van Huystee RB (1983) Glutamic acid is the heme precursor for peroxidase synthesized by peanut cells in suspension culture. Phytochemistry 22: 1721–1723.

    Google Scholar 

  • Chibbar RN & van Huystee RB (1986) Site of heme synthesis in cultured peanut cells. Phytochemistry 25: 585–587.

    Google Scholar 

  • Cipollo JF, Trimble RB, Rance M & Cavanagh J (2000) Two dimensional relayed-rotating-frame Overhauser spectroscopy 1 H NMR experiments for the selective identification of 1,2-glycosidic linkages in polysaccharides. Anal. Biochem. 278: 52–58.

    Google Scholar 

  • Clarke J & Shannon LM (1976) The isolation and characterization of the glycans of the glyco-peptides from horseradish peroxidase isoenzyme C. Biochem. Biophys. Acta 427: 428–442.

    Google Scholar 

  • Daniel RM, Dines M & Petach H (1996) The denaturation and degradation of stable enzymes at high temparatures. Biochem. J. 317: 1–17.

    Google Scholar 

  • Dell A & Morris HR (2001) Glycoprotein structure determination by mass spectroscopy. Science 291: 2351–2356.

    Google Scholar 

  • Dirckamer K & Taylor ME (1998) Evolving views of protein glycosylation. TIBS 23: 321–324.

    Google Scholar 

  • Dwek RA, Edge GJ, Harvey DJ, Wormald MR & Parekh RB (1993) Analysis of glycoprotein-associated oligosaccharides. Ann. Rev. Biochem 62: 65–100.

    Google Scholar 

  • Dwek RA (1996) Glycobiology: toward understanding the function of sugars. Chem. Rev. 96: 683–720.

    Google Scholar 

  • Edge ASB, Faltynek CR, Hof L, Riechert LE & Weber P (1981) Deglycosylation of glycoproteins by trifluoromethane sulfonic acid. Anal. Biochem. 118: 131–137.

    Google Scholar 

  • Edwards M, Bowman YJL, Dea IC & Reid JSG (1988) A β-D-galactosidase from Nasturtium cotyledons. Purification, proper-ties and demonstration that xyloglucan is the natural substrate. J. Biol. Chem. 263: 4333–4339.

    Google Scholar 

  • Elbein AD (1984) Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. Crit. Rev. in Biochem. 16: 21–49.

    Google Scholar 

  • Faye L & Chrispeels MJ (1989) Apparent inhibition of β-fructosidase secretion by tunicamycin may be explained by breakdown of the unglycosylated protein during secretion. Plant Physiol. 89: 845–851.

    Google Scholar 

  • Fichette-Laine AC, Gomord V, Chekkafi A & Faye L (1994) Distribution of xylosylation and fucosylation in the plant Golgi apparatus. Plant J. 5: 673–682.

    Google Scholar 

  • Fichette-Laine AC, Gomord V, Cabanes M, Michalski J-C, Saint Macary M, Foucher B, Cavelier B, Hawes C, Lerouge P & Faye L (1997) N-glycans harboring the Lewis a epitope are expressed at the surface of plant cells. Plant J. 12: 1411–1417.

    Google Scholar 

  • Gaudreault P-R & Tyson H (1988) Elimination of differences in the mobility of flax peroxidase on PAGE by digestion with α-mannosidase Plant Physiol. 86: 288–292.

    Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk L G, Kneer R, Poulev A, Skarzhinkaya M, Dushenko S, Logendra S, Gleba & Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci. USA. 96: 5973–5977.

    Google Scholar 

  • Goochee CF, Gramer MJ, Andersen DC, Bahr JB & Rasmussen JR (1991) The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnol. 9: 1347–1355.

    Google Scholar 

  • Goulut-Chassing C & Bourillon R (1995) Structural differences between complex-type Asn-linked glycan chains of rat hepatocytes and Zajdela hepatoma cells. Biochem. Biophys. Acta 1244: 30–40.

    Google Scholar 

  • Gray JSS, Yang BY & Montgomery R (1998) Heterogeneity of glycans at each N-glycosylation site of horseradish peroxidase. Carbohyd. Res. 311: 61–69.

    Google Scholar 

  • Haschke RH & Friedhoff JM (1978) Calcium-related properties of horseradish peroxidase. Biochem. Biophys. Res. Commun. 80: 1039–1043.

    Google Scholar 

  • Harthill JE & Ashford DAN (1992) N-glycosylation of horseradish peroxidase from cell culture. Biochem. Soc. Trans. 20: 113s.

  • Heinzmann CW & Hunziker W (1991) Intracellular calcium-binding proteins: more sites than insights. TIBS 16: 98–103.

    Google Scholar 

  • Helenius A & Aebi M (2001) Intracellular functions of N-linked glycans. Science 291: 2364–2369.

    Google Scholar 

  • Hochuli W, Bannwarth W, Dobeli H, Gentz R & Stuber D (1988) Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate absorbant. Bio/Technol. 6: 1321–1325.

    Google Scholar 

  • Hu C, Lee D, Chibbar RN & van Huystee RB (1987a) Ca2+ and peroxidase derived from cultured peanut cells. Physiol. Plant. 70: 99–102.

    Google Scholar 

  • Hu C, Carbonera D & van Huystee RB (1987b) Production and preliminary characterization of monoclonal antibodies against cationic peanut peroxidase. Plant Physiol. 85: 299–303

    Google Scholar 

  • Hu C & van Huystee RB (1988) Characterization of epitopes on the cationic peanut peroxidase by four monoclonal antibodies. Biochem. Biophys. Res. Commun. 156: 500–505.

    Google Scholar 

  • Hu C, Smith R & van Huystee RB (1989) Biosynthesis and localization of peanut peroxidases. A comparison of the cationic and anionic isozymes. J. Plant Physiol. 135: 391–397.

    Google Scholar 

  • Hu C & van Huystee RB (1989) Role of carbohydrate moieties in peanut peroxidases. Biochem. J. 263: 129–135.

    Google Scholar 

  • Hu C, Krol M & van Huystee RB (1990) Comparison of anionic with cationic peroxidase from cultured peanut cells. Plant Cell, Tissue Organ Culture 22: 65–70.

    Google Scholar 

  • Imberty A & Perez S (1995) Stereochemistry of the N-glycosylation sites in glycoproteins. Protein Eng. 8: 699–709.

    Google Scholar 

  • Imperiali B & Ricker KW (1995) Conformational implications of asparagine-linked glycosylation. Proc. Natl. Acad. Sci USA 92: 97–101.

    Google Scholar 

  • Inoue M & van Huystee RB (1984) Effects of caffeine treatment alone and in combination with gamma exposure on cultured peanut cells. Can. J. Bot. 62: 1890–1895.

    Google Scholar 

  • Jauregui-Adell J & Marti J (1975) Acidic cleavage of the aspartyl-proline bond and its limitations of the reaction. Anal. Biochem. 69: 468–472.

    Google Scholar 

  • Joao HC & Dwek RA (1993) Effects of glycosylation on protein structure and dynamics in RNase B and some of its individual glycoforms. Eur. J. Biochem. 218: 239–248.

    Google Scholar 

  • Klis FM (1995) O-glycosylation in plants. In: Glycoproteins <nt >Ed. </nt > Montreuil J, Vliegenthart JFG, Schachter H, pp. 511–520, Elsevier.

  • Konermann L & Douglas DJ (1998) Equilibrium unfolding of proteins monitored by electrospray ionization mass spectrometry: distinguishing two-state from multi-state transitions. Mass Spec. 12: 435–442.

    Google Scholar 

  • Kuosaka A, Yano A, Itoh N, Kuroda Y, Nakagawa T & Kawasaki (1991) The structure of a neural specific carbohydrate epitope of horse radish peroxidase recognized by anti horseradsih peroxidase serum. J. Biol. Chem. 266: 4168–4172.

    Google Scholar 

  • Lessard PA, Kulaveerasingam H, York GM, Strong A & Sins-key AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metabolic Engin. 4: 67–79.

    Google Scholar 

  • Leonard J, Gruenewald S & Clayton P (2001) Diversity of congenital disorders of glycosylation. Lancet 357: 1382–1383.

    Google Scholar 

  • Lessard PA, Kulaveerasingam H, York GM, Strong A & Sins-key AJ (2002) Manipulating gene expression for the metabolic engineering of plants. Metabolic Engin. 4: 67–79.

    Google Scholar 

  • Lerouge P, Cabanes-Macheteau M, Rayon C, Fichette-Laine A-C, Gomord V & Faye L (1998) N-glycoprotein biosynthesis in plants: recent developments and future trends. Plant Mol. Biol. 38: 31–48.

    Google Scholar 

  • Lige B, Ma S-W & van Huystee RB (1998a) Expression of the peanut peroxidase cDNA in E. coli and purification of the protein by nickel affinity. Plant Physiol. Biochem. 36: 335–338.

    Google Scholar 

  • Lige B, Ma S-W, Zhao D & van Huystee RB (1998b) Cationic peanut peroxidase: expression and characterization in transgenic tobacco and purification of the histidine-tagged protein. Plant Sci. 136: 159–168.

    Google Scholar 

  • Lige B, Ma S-W & van Huystee RB (2000) Glycosylation of the cationic peanut peroxidase gene expressed in transgenic tobacco. Plant Sci. 156: 55–63.

    Google Scholar 

  • Lige B, Ma S-W & van Huystee R B (2001) The effects of site-directed removal of N-glycosylation from cationic peroxidase on its function. Arch. Biochem. Biophys. 386: 17–24.

    Google Scholar 

  • MacArthur MW, Driscoll PC & Thornton JM (1994) NMR and crystallography: complementary approaches to structure determination. TIBTECH 12: 149–157.

    Google Scholar 

  • Maldonado BA & van Huystee RB (1980) Isolation of a cationic peroxidase from cultured peanut cells. Can. J. Bot. 58: 2280–2284.

    Google Scholar 

  • Mari S, Marques L, Breton F, Karamanos Y & Macheix JJ (1998) Unfolding and refolding of active apple polyphenol oxidase. Phytochemistry 49: 1213–1217.

    Google Scholar 

  • Martinez IM. & Chrispeels MJ (2003) Genomic analysis of the un-folded protein response in Arabidopsis shows its connection to important cellular processes. Plant Cell 15: 561–576.

    Google Scholar 

  • McEldoon HP & Dordick JS (1996) Unusual thermal stability of soybean peroxidase. Biotechnol. Prog. 12: 555–558.

    Google Scholar 

  • Morishima L, Kurono M & Shiro Y (1986) Presence of endogenous calcium ion in horseradish peroxidase. J. Biol. Chem. 261: 9391–9399.

    Google Scholar 

  • O'Donnell JP & van Huystee RB (1992) Peanut peroxidase and the anionic component. Can. J. Bot. 70: 1131–1133.

    Google Scholar 

  • O'Donnell JP, Wan L & van Huystee R B (1992) Characterization of two forms of cationic peroxidase from cultured peanut cells. Biochem. Cell Biol. 70: 166–169.

    Google Scholar 

  • Ogawa S, Shiro Y & Morishima I (1979) Calcium binding by horseradish peroxidase C and the heme environmental structure. Biochem. Biophys. Res. Commun. 90: 674–679.

    Google Scholar 

  • Plock A, Beyer G, Hiller K, Gruendemann E, Krause E, Nimtz M & Wray V (2001) Application of MS and NMR to the structure elucidation of complex sugar moieties of natural products: exemplified by the steroidal saponin from Yucca filimentosa L. Phytochemistry 57: 489–496.

    Google Scholar 

  • Price NC, Stevens L (1988) Fundamentals of Enzymology. Oxford University Press. pp. 365–422.

  • Ravi K, Hu C, Reddi PS & van Huystee RB (1986) Effect of tunicamycin on peroxidase release by cultured peanut suspension cells. J. Exp. Bot. 37: 1708–1715.

    Google Scholar 

  • Rayon C, Cabanes-Macheteau M, Loutelier-Bourhis C, Salliot-Maire I, Lemoine J, Rieter W-D, Lerouge P & Faye L 1999 Characterization of N-glycans from Arabidopsis. Application to a fucose-deficient mutant. Plant Physiol. 119: 725–733.

    Google Scholar 

  • Reeke GN, Becker JW & Edelman GM (1978) Changes in the three dimensional structure of concanavaline A upon demetallization. Proc. Natl Acad. Sci. USA 75: 2286–2290.

    Google Scholar 

  • Rodriguez Maranon MJ, Stillman MJ & van Huystee RB (1993) Co-dependency of calcium and porphyrin for an integrated molecular structure of peanut peroxidase: a circular dichroism analysis. Biochem. Biophys. Res Commun. 194: 326–332.

    Google Scholar 

  • Rodriguez A, Pina DG, Yelamos Castillo Leon JJ, Zhadan GG, Villar E, Gavilanes F, Roig MG, Sakharov IY & Shnyrov V L. (2002) Thermal stability of peroxidase from African oil palm tree. Eur. J. Biochem. 269: 2584–2590.

    Google Scholar 

  • Roitsch T & Lehle L (1989) Structural requirements for protein N-glycosylation. Influence of acceptor peptides on co-translational of yeast invertase and site-directed mutagenesis around a sequon sequence. Eur. J. Biochem. 181: 525–533.

    Google Scholar 

  • Ross GS, Redgewell RJ & Macrae EA (1993) Kiwi fruit ß-galactosidase isolation and activity against specific fruit cell wall polysaccharides. Planta 189: 499–506.

    Google Scholar 

  • Schimke RT & Katunuma N (1975) Intracellular Protein Turnover. Academic Press.

  • Schuller DJ, Ban N, van Huystee RB, McPherson A & Poulos TL (1996) The crystal structure of peanut peroxidase. Structure 4: 311–321.

    Google Scholar 

  • Schwarz RT, Schmidt MFG & Datema R (1979) Inhibition of glycosylation of viral glyco-proteins. Biochem. Soc. Trans. 7: 322–330.

    Google Scholar 

  • Service RF (2003) Yeast engineered to produce sugared human proteins. Science 301: 1171

    Google Scholar 

  • Sesto PA & van Huystee RB (1989) Purification and yield of a cationic peroxidase from peanut suspension cell culture. Plant Sci. 61: 163–168.

    Google Scholar 

  • Shaw GS, Sun Y, Barber KR & van Huystee RB (2000) Sequence specific analysis of the heterogenous glycan chain from peanut peroxidase by 1H-NMR spectroscopy. Phytochemistry 53: 135–144.

    Google Scholar 

  • Shiro Y, Kurono M & Morishima I (1986) Presence of endogenous calcium ion and its functional and structural regulation in horseradish peroxidase. J. Biol. Chem. 261: 9382–9390.

    Google Scholar 

  • Siebert KJ, Troukhanova NV & Lynn PY (1996) Nature of polyphenol-protein interactions. J. Agric. Food Chem. 44: 80–87.

    Google Scholar 

  • Spencer CM, Cai Y, Martin R, Gaffney SH, Goulding PN, Magnolata D, Lilley TH & Haslam E (1988) Polyphenol complexation-some thoughts and observations. Phytochemistry 27: 2397–2402.

    Google Scholar 

  • Srivastava OP & van Huystee RB (1977) Interactions among phenolics and peroxidase isozymes. Bot. Gaz. 138: 457–464.

    Google Scholar 

  • Staudacher E, Dalik T, Wawra P, Altmann F & Maerz L 1995 Functional purification and characterisation of a GDP-fucose: $-N-acetylglucosamine (Fuc to Asn linked GlcNac) α1,3-fucosyltransferase from mung beans. Glycoconjugate J. 12: 780–786.

    Google Scholar 

  • Stegemann H, Francksen H & Macko V (1973) Potato proteins; genetic and physiological changes evaluated by one-and two-dimensional PAA-gel-techniques. Z. Naturforschg 28c: 722–729.

    Google Scholar 

  • Stephan D & van Huystee RB (1981) Some aspects of peroxidase synthesis by cultured peanut cells. Z. Pflanzenphysiol. 101: 313–321.

    Google Scholar 

  • Sturm A (1991) Heterogeneity of the complex N-linked oligosac-charides at specific glycosylation sites of two secreted carrot glycoproteins. Eur. J. Biochem. 199: 169–179.

    Google Scholar 

  • Sun Y, Lige B & van Huystee RB (1997) HPLC determination of the sugar compositions of the glycans on the cationic peanut peroxidase. J. Agric. Food Chem. 45: 4196–4200.

    Google Scholar 

  • Tarentino AL, Trimble RB & Plummer TH (1989) Enzymatic approaches for studying the structure, synthesis and processing of glycoproteins. In: Methods in Enzymology 32, pp. 111–139, Academic Press.

    Google Scholar 

  • Terashima M, Kubo A, Suzawa M, Itoh Y & Katoh S (1994) The roles of the N-linked carbohydrate chain in rice α-amylase in thermostability and enzyme kinetics. Eur. J. Biochem. 226: 249–254.

    Google Scholar 

  • van den Eijnden DH & Joziasse DH (1993) Enzymes associated with glycosylation. Curr. Opin. Struct. Biol. 3: 711–721.

    Google Scholar 

  • van de Velde F, van Rantwyk F & Sheldon RA (2001) Improving catalytic performance of peroxidase in organic synthesis. Trends Biotechnol. 19: 73–80.

    Google Scholar 

  • van Huystee RB & Verma DPS (1969) The incorporation of leucine in cotyledons of control and irradiated peanut seeds. Rad. Bot. 9: 323–329.

    Google Scholar 

  • van Huystee RB & Lobarzewski J (1982) An immunological study on peroxidase release by cultured peanut cells. Plant Science Letters. 27: 59–67.

    Google Scholar 

  • van Huystee RB (1987) Some molecular aspects of plant peroxidase biosynthetic studies. Ann. Rev. Plant Physiol. 38: 205–219.

    Google Scholar 

  • van Huystee RB & Tam ASK (1988) Peptides released by cultured peanut cells during growth. J. Plant Physiol. 133: 645–647.

    Google Scholar 

  • van Huystee RB, Xu Y & O'Donnell JP (1992a) Variation in Soret band absorption of peroxidase due to calcium. Plant Physiol. Biochem. 30: 293–297.

    Google Scholar 

  • van Huystee RB, Sesto PA & O'Donnell JP (1992b) Number and size of oligosaccharides linked to peanut peroxidases. Plant Physiol. Biochem. 30: 147–152.

    Google Scholar 

  • van Huystee RB, Malko M, Wen K & Gijzen M (1994) Isolation of peroxidase from bean and millet compared to that from peanut. Can. J. Bot. 72: 1432–1435.

    Google Scholar 

  • van Huystee RB & Zheng X (1993) Cationic peroxidase and the oxidation of ferulic acid. Phytochemistry 34: 933–939.

    Google Scholar 

  • van Huystee RB & Wan L (1994) Carbohydrate moiety of pea-nut peroxidase necessary for enzyme activity. C.R. Acad. Sci. Paris/Life Sci. 317: 789–794.

    Google Scholar 

  • van Huystee RB & Zheng X (1995a) Peanut peroxidase, its location and extensin, coniferyl oxidation. Plant Physiol. Biochem. 33: 55–60.

    Google Scholar 

  • van Huystee RB & Zheng X (1995b) Half-life of peroxidase in actively growing and arrested peanut cells. C. R. Acad. Sci. Paris/Life Sci. 318: 655–658.

    Google Scholar 

  • van Huystee RB & McManus MT (1998) Glycans of higher plant peroxidases: recent observations and future speculations. Glycoconjugate J. 15: 101–106.

    Google Scholar 

  • Verma DPS & van Huystee RB (1970) Cellular differentiation and peroxidase isozymes in cell culture of peanut cotyledons. Can. J. Bot. 48: 429–431.

    Google Scholar 

  • Verma DPS (1970) Some effects of ionizing radiation on peanut cells in relation to protein synthesis. Ph.D. dissertation. University of Western Ontario., London, Ontario, Canada.

    Google Scholar 

  • Vliegenthart JFG & Casset F (1998) Novel forms of protein glycosylation. Curr. Op. Struct. Biol. 8: 565–571.

    Google Scholar 

  • Voigt J & Frank R (2003) 14–3–3 Proteins are constituents of the insoluble glycoprotein framework of the Chlamydomonas cell wall. Plant Cell 15: 1399–1413.

    Google Scholar 

  • Wan L & van Huystee RB (1993) A study of glycosylation of cationic peanut peroxidase. Biochem. Biophys. Res. Commun. 194: 1398–1405.

    Google Scholar 

  • Wan L & van Huystee RB (1994) Immunogenicity of the N-glycans of peanut peroxidase. Phytochem. 37: 933–940.

    Google Scholar 

  • Wan L, Gijzen M & van Huystee RB (1994) Heterogeneous glycosylation of the cationic peanut peroxidase. Biochem. Cell Biol. 72: 411–417.

    Google Scholar 

  • Watt GM, Lowden PAS & Flitsch SL (1997) Enzyme catalysed formation of glycosidic linkages. Curr. Op. Struct. Biol. 7: 652–660.

    Google Scholar 

  • Watson IN, Watson LM, Murray TA, Lige B, van Huystee RB & McManus MT (1998) Identification of two further cationic peroxidase isoenzymes secreted by peanut cells in suspension culture. Plant Physiol. Biochem. 36: 591–599.

    Google Scholar 

  • Wilson LG & Fry JC (1986) Extensin a major cell wall glycoprotein. Plant Cell Environ. 9: 239–260.

    Google Scholar 

  • Xu Y & van Huystee RB (1991) Identification of an antigenic determinant on the anionic peanut peroxidase by monoclonal antibodies. J. Exptl. Bot. 240: 935–945.

    Google Scholar 

  • Xu Y & van Huystee RB (1993) Association of calcium and calm-odulin to peroxidase secretion. J. Plant Physiol. 141: 141–146.

    Google Scholar 

  • Yang BY, Gray JSS & Montgomery R (1996) The glycans of horseradish peroxidase. Carbohyd. Res. 287: 203–213.

    Google Scholar 

  • Yet M-G & Wold F (1990) The distribution of glycan structures in individual N-glycosyation sites in animal and plant glycoproteins. Arch. Biochem. Biophys. 278: 356–364.

    Google Scholar 

  • Zheng X & van Huystee RB (1991) Oxidation of tyrosine by peroxidase isozymes derived from peanut suspension culture medium and isolated cell walls. Plant Cell Tissue Organ Cult. 25: 35–43.

    Google Scholar 

  • Zheng X & van Huystee RB (1992a) Peroxidase-regulated elongation of segments from peanut hypocotyls. Plant Sci. 81: 47–56.

    Google Scholar 

  • Zheng X & van Huystee RB (1992b) Anionic peroxidase catalysed ascorbic acid and IAA oxidation in the presence of hydrogen peroxide: a defence system against peroxidative stress in peanut plant. Phytochemistry 31: 1895–1898.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Huystee, R.B., Roig, M.G., Shnyrov, V.L. et al. Peroxidase stability related to its calcium and glycans. Phytochemistry Reviews 3, 19–28 (2004). https://doi.org/10.1023/B:PHYT.0000047802.79211.32

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHYT.0000047802.79211.32

Navigation