Skip to main content
Log in

Effective Transfection of Rabies DNA Vaccine in Cell Culture Using an Artificial Lipoprotein Carrier System

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the transfection efficiency in cell culture of rabies plasmid DNA vaccine carried by a novel artificial lipoprotein system.

Methods. Phospholipid nanoemulsions resembling the lipid core of natural lipoproteins were prepared. The artificial lipoprotein carrier system for DNA was constructed by assembling of the nanoemulsion (NE)-palmitoyl-poly-l-lysine (p-PLL)-rabies DNA complex. Agarose gel electrophoresis, zeta potential, and mobility measurement were conducted to determine the surface charge balance in various complex compositions. Transfection and transfection efficiency were examined by fluorescence microscopy and flow cytometry, respectively.

Results. The artificial lipoprotein system was successfully constructed and the rabies DNA vaccine was effectively transfected in glioma cell line SF-767. The amount of p-PLL incorporated into the artificial lipoprotein formulations had a significant effect on transfection efficiency. The new system also proved to be more efficient in cellular transfection of rabies DNA vaccine than the commercial lipofectamine formulation.

Conclusions. Effective transfection of rabies DNA vaccine in cell culture can be achieved using the novel artificial lipoprotein carrier system, and the charge balance of the NE-p-PLL-DNA complex appears an important factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Cui and R. J. Mumper. Microparticles and nanoparticles as delivery systems for DNA vaccines. Crit. Rev. Ther. Drug Carrier Syst. 20:103-137 (2003).

    Google Scholar 

  2. J. A. Wolff, R. W. Malone, P. Williams, W. Chong, G. Acsadi, A. Jani, and P. L. Felgner. Direct gene transfer into mouse muscle in vivo. Science 247:1465-1468 (1990).

    Google Scholar 

  3. S. Liljeqvist and S. Stahl. Production of recombinant subunit vaccines: protein immunogens, live delivery systems and nucleic acid vaccines. J. Biotechnol. 73:1-33 (1999).

    Google Scholar 

  4. T. Beyer, M. Herrmann, C. Reiser, W. Bertling. and J. Hess. Bacterial carriers and virus-like-particles as antigen delivery devices: role of dendritic cells in antigen presentation. Curr. Drug Targets Infect. Disorders 1:287-302 (2001).

    Google Scholar 

  5. C. C. Guo, J. Ding, B. R. Pan, Z. C. Yu, Q. L. Han, F. P. Meng, N. Liu, and D. M. Fan. Development of an oral DNA vaccine against MG7-Ag of gastric cancer using attenuated salmonella typhimurium as carrier. World J. Gastroenterol. 9:1191-1195 (2003).

    Google Scholar 

  6. K. Lundstrom. Alphavirus vectors for gene therapy applications. Curr. Gene Ther. 1:19-29 (2001).

    Google Scholar 

  7. J. Navarro, N. Oudrhiri, S. Fabrega, and P. Lehn. Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors. Adv. Drug Deliv. Rev. 30:5-11 (1998).

    Google Scholar 

  8. C. R. Dass. Cytotoxicity issues pertinent to lipoplex-mediated gene therapy in-vivo. J. Pharm. Pharmacol. 54:593-601 (2002).

    Google Scholar 

  9. H. Madry, R. Reszka, and J. Bohlender. and J. Wagner. Efficacy of cationic liposome-mediated gene transfer to mesangial cells in vitro and in vivo. J. Mol. Med. 79:184-189 (2001).

    Google Scholar 

  10. M. C. Filion and N. C. Phillips. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim. Biophys. Acta 1329:345-356 (1997).

    Google Scholar 

  11. G. Pan, M. Shawer, S. Øie, and D. R. Lu. In vitro gene transfection in human glioma cells using a novel and less cytotoxic artificial lipoprotein delivery system. Pharm. Res. 20:738-744 (2003).

    Google Scholar 

  12. D. A. Bull, S. H. Bailey, J. J. Rentz, J. S. Zebrack, M. Lee, S. E. Litwin, and S. W. Kim. Effect of Terplex/VEGF-165 gene therapy on left ventricular function and structure following myocardial infarction. VEGF gene therapy for myocardial infarction. J. Controll. Rel. 93:175-181 (2003).

    Google Scholar 

  13. J. M. Benns and S. W. Kim. Tailoring new gene delivery designs for specific targets. J. Drug Target. 8:1-12 (2000).

    Google Scholar 

  14. T. Hara, Y. Tan, and L. Huang. In vivo gene delivery to the liver using reconstituted chylomicron remnants as a novel nonviral vector. Proc. Natl. Acad. Sci. U. S. A. 94:14547-14552 (1997).

    Google Scholar 

  15. Z. Q. Xiang, S. L. Spitalnik, J. Cheng, J. Erikson, B. Wojczyk, and H. C. Ertl. Immune responses to nucleic acid vaccines to rabies virus. Virology 209:569-579 (1995).

    Google Scholar 

  16. N. B. Ray, L. C. Ewalt, and D. L. Lodmell. Nanogram quantities of plasmid DNA encoding the rabies virus glycoprotein protect mice against lethal rabies virus infection. Vaccine 15:892-895 (1997).

    Google Scholar 

  17. J. E. Osorio, C. C. Tomlinson, R. S. Frank, E. J. Haanes, K. Rushlow, J. R. Haynes, and D. T. Stinchcomb. Immunization of dogs and cats with a DNA vaccine against rabies virus. Vaccine 17:1109-1116 (1999).

    Google Scholar 

  18. Z. F. Fu, C. E. Rupprecht, B. Dietzschold, P. Saikumar, H. S. Niu, I. Babka, W. H. Wunner, and H. Koprowski. Oral vaccination of raccoons (Procyon lotor) with baculovirus-expressed rabies virus glycoprotein. Vaccine 11:925-928 (1993).

    Google Scholar 

  19. M. Shawer, P. Greenspan, S. Øie, and D. R. Lu. VLDL-resembling phospholipid-submicron emulsion for cholesterol-based drug targeting. J. Pharm. Sci. 91:1405-1413 (2002).

    Google Scholar 

  20. J. S. Kim, A. Maruyama, T. Akaike, and S. W. Kim. In vitro gene expression on the smooth muscle cells using a terplex delivery system. J. Controll. Rel. 47:51-59 (1997).

    Google Scholar 

  21. A. L. Davis. Gene based vaccine. In A. Rolland (ed.), Advance Gene Delivery Book, Amsterdam: Harwood academic, 1999, pp. 213-233.

    Google Scholar 

  22. L. Yu, H. Suh, J. J. Koh, and S. W. Kim. Systemic administration of TerplexDNA system: pharmacokinetics and gene expression. Pharm. Res. 18:1277-1283 (2001).

    Google Scholar 

  23. J. G. Duguid and R. H. Durland. DNA packing in non-viral systems. In A. Rolland (ed), Advance Gene Delivery Book, Amsterdam: Harwood academic, 1999, pp. 45-63

    Google Scholar 

  24. S. Han, R. I. Mahato, Y. K. Sung, and S. W. Kim. Development of biomaterials for gene therapy. Mol. Ther. 2:302-317 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Robert Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alanazi, F., Fu, Z.F. & Lu, D.R. Effective Transfection of Rabies DNA Vaccine in Cell Culture Using an Artificial Lipoprotein Carrier System. Pharm Res 21, 675–682 (2004). https://doi.org/10.1023/B:PHAM.0000022415.74531.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000022415.74531.d9

Navigation