Skip to main content
Log in

The Tyrosine Phosphorylation and Cytoskeletal Translocation of Phospholipase Cγ1 in Bovine Adrenal Medullary Chromaffin Cells

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The tyrosine phosphatase inhibitor BpV(phen) stimulated a concentration-dependent increase of phospholipase C (PLC) activity in bovine adrenal medullary chromaffin cells. This response was accompanied by an increase in PLCγ1 tyrosine phosphorylation and its cytosketetal translocation. Insulin, at high concentrations, stimulated PLC activity to a similar extent as BpV(phen), a response that was also accompanied by an increase in PLCγ1 translocation but not its tyrosine phosphorylation. BpV(phen) strongly enhanced the insulin-stimulated increase in PLC activity and caused a small rise in PLCγ1 translocation above that seen with insulin alone. Despite the synergistic rise in activity PLCγ1 tyrosine phosphorylation did not increase beyond that seen with BpV(phen) alone. These results indicate that PLCγ1 activation in chromaffin cells may be more closely associated with its cytoskeletal translocation than its tyrosine phosphorylation although other factors may also be important for activation of enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Rebecchi, M. J. and Pentyala, S. N. 2000 Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80:1291-1335.

    Google Scholar 

  2. Irvine, R. F. and Schell, M. J. 2001 Back in the water:the return of the inositol phosphates. Nature Rev. Mol. Cell Biol. 2:327-338.

    Google Scholar 

  3. Song, C., Hu, C. D., Masago, M., Kariyai, K., Yamawaki-Kataoka, Y., Shibatohge, M., Wu, D., Satoh, T., and Kataoka, T. 2001. Regulation of a novel human phospholipase C, PLCepsilon, through membrane targeting by Ras. J. Biol. Chem. 276:2752-2757.

    Google Scholar 

  4. Luttrell, L. M., Daaka, Y., and Lefkowitz, R. J. 1999 Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current Opinion Cell Biol. 11:177-183.

    Google Scholar 

  5. Plevin, R. and Boarder, M. R. 1988 Stimulation of formation of inositol phosphates in primary cultures of bovine adrenal chromaffin cells by angiotensin II, histamine, bradykinin, and carbachol. J. Neurochem. 51:634-641.

    Google Scholar 

  6. Bunn, S. J., Marley, P. D., and Livett, B. G. 1990 Receptor stimulated formation of inositol phosphates in cultures of bovine adrenal medullary cells:The effects of bradykinin, bombesin and neurotensin. Neuropeptides 15:187-194.

    Google Scholar 

  7. Bunn, S. J. and Dunkley, P. R. 1997 Histamine-stimulated phospholipase C signalling in the adrenal chroma. n cell: effects on inositol phospholipid metabolism and tyrosine hydroxylase phosphorylation. Clin. Exp. Pharmacol. Physiol. 24:624-631.

    Google Scholar 

  8. Bunn, S. J., Saunders, H. I., and Dunkley, P. R. 1995 Histamine-stimulated inositol phospholipid metabolism in bovine adrenal medullary cells:A kinetic analysis. J. Neurochem. 65:626-635.

    Google Scholar 

  9. Roberts-Thomson, E. L., Saunders, H. I., Palmer, S. M., Powis, D. A., Dunkley, P. R., and Bunn, S. J. 2000. Ca(2+) in. ux stimulated phospholipase C activity in bovine adrenal chroma. n cells:Responses to K(+)depolarization and histamine. Eur. J. Pharmacol. 398:199-207.

    Google Scholar 

  10. Sasakawa, N., Nakaki, T., Yamamoto, S., and Kato, R. 1989. Calcium uptake-dependent and-independent mechanisms of inositol trisphosphate formation in adrenal chromaffin cells:comparative studies with high K+, carbamylcholine and angiotensin II. Cellular Signalling 1:75-84.

    Google Scholar 

  11. Choi, A. Y., Cahill, A. L., Perry, B. D., and Perlman, R. L. 1993. Histamine evokes greater increases in phosphatidylinositol metabolism and catecholamine secretion in epinephrine-containing than in norepinephrine-containing chromaffin cells. J. Neurochem. 61:541-549.

    Google Scholar 

  12. Zerbes, M., Bunn, S. J., and Powis, D. A. 1998. Histamine causes Ca2+ entry via both a store-operated and a store-independent pathway in bovine adrenal chromaffin cells. Cell Calcium 23:379-386.

    Google Scholar 

  13. Waymire, J. C., Bennett, W. F., Boehme, R., Hankins, L., Gilmer-Waymire, K., and Haycock, J. W. 1983 Bovine adrenal chromaffin cells:high-yield purification and viability in suspension culture. J. Neurosci. Meth. 7:329-351.

    Google Scholar 

  14. Tomas, F. M., Walton, P. E., Dunshea, F. R., and Ballard, F. J. 1997 IGF-I variants which bind poorly to IGF-binding proteins show more potent and prolonged hypoglycaemic action than native IGF-I in pigs and marmoset monkeys. J. Endocrinol. 155:377-386.

    Google Scholar 

  15. Ballard, F. J., Wallace, J. C., Francis, G. L., Read, L. C., and Tomas, F. M. 1996. Des(1-3)IGF-I:a truncated form of insulin-like growth factor-I. Int. J. Biochem. Cell Biol. 28:1085-1087.

    Google Scholar 

  16. Matsuda, M., Paterson, H. F., Rodriguez, R., Fensome, A. C., Ellis, M. V., Swann, K., and Katan, M. 2001 Real time fluorescence imaging of PLC gamma translocation and its interaction with the epidermal growth factor receptor. J. Cell Biol. 153:599-612.

    Google Scholar 

  17. Wang, X. J., Liao, H. J., Chattopadhyay, A., and Carpenter, G. 2001. EGF-dependent translocation of green. uorescent protein-tagged PLC-gamma1 to the plasma membrane and endosomes. Exp. Cell Res. 267:28-36.

    Google Scholar 

  18. Hiller, G. and Sundler, R. 2002. Regulation of phospholipase C-gamma 2 via phosphatidylinositol 3-kinase in macrophages. Cellular Signalling 14:169-173.

    Google Scholar 

  19. Palmier, B., Vacher, M., Harbon, S., and Leiber, D. 1999. A tyrosine kinase signaling pathway, regulated by calcium entry and dissociated from tyrosine phosphorylation of phospholipase Cgamma-1, is involved in inositol phosphate production by activated G protein-coupled receptors in myometrium. J. Pharmacol. Exp. Therapeutics 289:1022-1030.

    Google Scholar 

  20. Morelli, S., Buitrago, C., Vazquez, G., De Boland, A. R., and Boland, R. 2000. Involvement of tyrosine kinase activity in 1alpha, 25(OH)2-vitamin D3 signal transduction in skeletal muscle cells. J. Biological Chem. 275:36021-36028.

    Google Scholar 

  21. Boulven, I., Robin, P., Desmyter, C., Harbon, S., and Leiber, D. 2002. Differential involvement of Src family kinases in pervanadate-mediated responses in rat myometrial cells. Cellular Signalling 14:341-349.

    Google Scholar 

  22. Danielsen, A., Larsen, E., and Gammeltoft, S. 1990. Chromaffin cells express two types of insulin-like growth factor receptors. Brain Res. 518:95-100.

    Google Scholar 

  23. Chabot, J. G., Walker, P., and Pelletier, G. 1986. Distribution of epidermal growth factor binding sites in the adult rat adrenal gland by light microscope autoradiography. Acta Endocrino. 113:391-395.

    Google Scholar 

  24. Haycock, J. W. 1993. Multiple signaling pathways in bovine chroma. n cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochem. Res. 18:15-26.

    Google Scholar 

  25. Pandiella-Alonso, A., Malgaroli, A., Vicentini, L. M., and Meldolesi, J. 1986. Early rise of cytosolic Ca 2+ induced by NGF in PC12 and chromaffin cells. FEBS Lett. 208:48-51.

    Google Scholar 

  26. Nishibe, S., Wahl, M. I., Wedegaertner, P. B., Kim, J. W., Rhee, S. G., Carpenter, G., and Kim, J. J. 1990. Selectivity of phospholipase C phosphorylation by the epidermal growth factor receptor, the insulin receptor, and their cytoplasmic domains. Proc. Nat. Acad Sci. USA 87:424-428.

    Google Scholar 

  27. Kayali, A. G., Eichhorn, J., Haruta, T., Morris, A. J., Nelson, J. G., Vollenweider, P., Olefsky, J. M., and Webster, N. J. 1998. Association of the insulin receptor with phospholipase C-gamma (PLCgamma)in 3T3-L1 adipocytes suggests a role for PLCgamma in metabolic signaling by insulin. J. Biol. Chem. 273:13808-13818.

    Google Scholar 

  28. Eichhorn, J., Kayali, A. G., Resor, L., Austin, D. A., Rose, D. W., and Webster, N. J. 2002. PLC-gamma1 enzyme activity is required for insulin-induced DNA synthesis. Endocrinology 143:655-664.

    Google Scholar 

  29. Serck-Hanssen, G. and Sovik, O. 1991. Binding of insulin and insulin-like growth factor I in bovine chromaffin cells in primary culture. Internat. J. Biochem. 23:85-91.

    Google Scholar 

  30. Yamamoto, R., Yanagita, T., Kobayashi, H., Yuhi, T., Yokoo, H., and Wada, A. 1996. Upregulation of functional voltage-dependent sodium channels by insulin in cultured bovine adrenal chromaffin cells. J. Neurochem. 67:1401-1408.

    Google Scholar 

  31. Shiraishi, S., Yamamoto, R., Yanagita, T., Yokoo, H., Kobayashi, H., Uezono, Y., and Wada, A. 2001. Down-regulation of cell surface insulin receptors by sarco(endo)plasmic reticulum Ca2+-ATPase inhibitor in adrenal chromaffin cells. Brain Res. 898:152-157.

    Google Scholar 

  32. Fladeby, C., Bjonness, B., and Serck-Hanssen, G. 1996 GLUT1-mediated glucose transport and its regulation by IGF-I in cultured bovine chromaffin cells. J. Cellular Physiol. 169:242-247.

    Google Scholar 

  33. Posner, B. I., Faure, R., Burgess, J. W., Bevan, A. P., Lachance, D., Zhang-Sun, G., Fantus, I. G., Ng, J. B., Hall, D. A., and Lum, B. S. 1994. Peroxovanadium compounds. A new class of potent phosphotyrosine phosphatase inhibitors which are insulin mimetics. J. Biol. Chem. 269:4596-4604.

    Google Scholar 

  34. Mitchell, C. J., Kelly, M. M., Blewitt, M., Wilson, J. R., and Biden, T. J. 2001. Phospholipase C-gamma mediates the hydrolysis of phosphatidylinositol, but not of phosphatidylinositol 4, 5-bisphoshate, in carbamylcholine-stimulated islets of langerhans. J. Biol. Chem. 276:19072-19077.

    Google Scholar 

  35. Chasserot-Golaz, PS., Hubert, P., Thierse, D., Dirrig, S., Vlahos, C. J., Aunis, D., and Bader, M. F. 1998. Possible involvement of phosphatidylinositol 3-kinase in regulated exocytosis:studies in chromaffin cells with inhibitor LY294002. J. Neurochem. 70:2347-2356.

    Google Scholar 

  36. Warashina, A. 2001 Mechanism by which wortmannin and LY294002 inhibit catecholamine secretion in the rat adrenal medullary cells. Cell Calcium 29:239-247.

    Google Scholar 

  37. Rose, S. D., Lejen, T., Zhang, L., and Trifaro, J. M. 2001. Chroma. n cell F-actin disassembly and potentiation of catecholamine release in response to protein kinase C activation by phorbol esters is mediated through myristoylated alaninerich C kinase substrate phosphorylation. J. Biol. Chem. 276:36757-36763.

    Google Scholar 

  38. O 'Connell, G. C., Douglas, S. A., and Bunn, S. J. 2003. The involvement of specific phospholipase C isozymes in catecholamine release from digitonin permeabilized bovine adrenal medullary chromaffin cells. Neurosci. Lett. 342:1-4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts-Thomson, E.L., Herd, L.M., Saunders, H.I. et al. The Tyrosine Phosphorylation and Cytoskeletal Translocation of Phospholipase Cγ1 in Bovine Adrenal Medullary Chromaffin Cells. Neurochem Res 29, 1847–1855 (2004). https://doi.org/10.1023/B:NERE.0000042211.76499.c6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000042211.76499.c6

Navigation