Skip to main content
Log in

A Molecular Description of Brain Trauma Pathophysiology Using Microarray Technology: An Overview

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It has been estimated that 50% of human transcriptome, the collection of mRNA in a cell, is expressed in the brain, making it one of the most complex organs to understand in terms of genomic responses to injury (1). The availability of genome sequences for several organisms coupled with the increasing affordability of microarray technologies makes it feasible to monitor the mRNA levels of thousands of genes simultaneously. In this paper, we provide an overview of findings using both cDNA- and oligonucleotide-based microarray analyses after experimental traumatic brain injury (TBI). Specifically, the utility of this methodology as a means of cataloging the biochemical sequelae of brain trauma and elucidating novel genes or pathways for further study is discussed. Furthermore, we offer future directions for the continued evaluation of microarray results and discuss the usefulness of microarray techniques as a testing format for determining the efficacy of mechanism-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo, Z. and Geschwind, D. H., 2001. Microarray application in neuroscience. Neurobiol. Dis. 8:183–189.

    PubMed  Google Scholar 

  2. Boll, T. J. 1982. Behavioral sequelae of head injury. Pages 363–375, in Cooper, P. R. (ed.), Head Injury. Williams and Wilkins, Baltimore, MD, USA.

    Google Scholar 

  3. Graham, D. I., Adams, J. H., and Gennarelli, T. A. 1996. Pathology of brain damage in head injury. In Cooper, P. R. (ed.), Part V/Trauma. 1386–1399, McGraw Hill, New York, NY, USA.

    Google Scholar 

  4. Dabrowski, M., Aerts, S., Van Hummelen, P., Craessaerts, K., De Moor, B., Annaert, W., Moreau, Y., and De Strooper, B. 2003. Gene profiling of hippocampal neuronal culture. J. Neurochem. 85:1279–1288.

    PubMed  Google Scholar 

  5. Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K. J., Rubin, M. A., and Chinnaiyan, A. M. 2001. Delineation of prognostic biomarkers in prostate cancer. Nature 412:822–826.

    PubMed  Google Scholar 

  6. de Veer, M. J., Holko, M., Frevel, M., Walker, E., Der, S., Paranjape, J. M., Silverman, R. H., and Williams, B. R. 2001. Functional classification of interferon-stimulated genes identified using microarrays. J. Leukoc. Biol. 69:912–920.

    PubMed  Google Scholar 

  7. Lock, C., Hermans, G., Pedotti, R., Brendolan, A., Schadt, E., Garren, H., Langer-Gould, A., Strober, S., Cannella, B., Allard, J., Klonowski, P., Austin, A., Lad, N., Kaminski, N., Galli, S. J., Oksenberg, J. R., Raine, C. S., Heller, R., and Steinman, L. 2002. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8:500–508.

    PubMed  Google Scholar 

  8. Polsky-Cynkin, R., Parsons, G. H., Allerdt, L., Landes, G., Davis, G., and Rashtchian, A. 1985. Use of DNA immobilized on plastic and agarose supports to detect DNA by sandwich hybridization. Clin. Chem. 31:1438–1443.

    PubMed  Google Scholar 

  9. Nisenbaum, L. K. 2002. The ultimate chip shot: can microarray technology deliver for neuroscience? Genes Brain Behav. 1: 27–34.

    PubMed  Google Scholar 

  10. Cao, Y. and Dulac, C. 2001. Profiling brain transcription: neurons learn a lesson from yeast. Curr. Opinion Neurobiol. 11: 615–620.

    Google Scholar 

  11. Mirnics, K. 2001. Microarrays in brain research: the good, the bad and the ugly. Nat. Rev. Neurosci. 2:444–447.

    PubMed  Google Scholar 

  12. Sendera, T. J., Dorris, D., Ramakrishnan, R., Nguyen, A., Trakas, D., and Mazumder, A. 2002. Expression profiling with oligonucleotide arrays: technologies and applications for neurobiology. Neurochem. Res. 27:1005–1026.

    PubMed  Google Scholar 

  13. Kobori, N., Clifton, G. L., and Dash, P. 2002. Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res. Mol. Brain Res. 104:148–158.

    PubMed  Google Scholar 

  14. Matzilevich, D. A., Rall, J. M., Moore, A. N., Grill, R. J., and Dash, P. K. 2002. High-density microarray analysis of hippocampal gene expression following experimental brain injury. J. Neurosci. Res. 67:646–663.

    PubMed  Google Scholar 

  15. Rall, J. M., Matzilevich, D. A., and Dash, P. K. 2003. Comparative analysis of mRNA levels in the frontal cortex and the hippocampus in the basal state and in response to experimental brain injury. Neuropathol. Appl. Neurobiol. 29:118–131.

    PubMed  Google Scholar 

  16. Rao, V. L. R., Dhodda, V. K., Song, G., Bowen, K. K., and Dempsey, R. J. 2003. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J. Neurosci. Res. 71:208–219.

    PubMed  Google Scholar 

  17. Long, Y., Zou, L., Liu, H., Lu, H., Yuan, X., Robertson, C. S., and Yang, K. 2003. Altered expression of randomly selected genes in mouse hippocampus after traumatic brain injury. J. Neurosci. Res. 71:710–720.

    PubMed  Google Scholar 

  18. Murphy, D. 2002. Gene expression studies using microarrays: principles, problems, and prospects. Adv. Physiol. Educ. 26:256–270.

    PubMed  Google Scholar 

  19. Halgren, R. G., Fielden, M. R., Fong, C. J., and Zacharewski, T. R. 2001. Assessment of clone identity and sequence fidelity for 1189 IMAGE cDNA clones. Nucleic Acids Res. 29:582–588.

    PubMed  Google Scholar 

  20. Tachibana, T., Noguchi, K., and Ruda, M. A. 2002. Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci. Lett. 327:133–137.

    PubMed  Google Scholar 

  21. Saito, M., Smiley, J., Toth, R., and Vadasz, C. 2002. Microarray analysis of gene expression in rat hippocampus after chronic ethanol treatment. Neurochem. Res. 27:1221–1229.

    PubMed  Google Scholar 

  22. Colangelo, V., Schurr, J., Ball, M. J., Pelaez, R. P., Bazan, N. G., and Lukiw, W. J. 2002. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70:462–473.

    PubMed  Google Scholar 

  23. Kato, K., Katoh-Semba, R., Takeuchi, I. K., Ito, H., and Kamei, K. 1999. Responses of heat shock proteins hsp27, αB-Crystallin, and hsp70 in rat brain after kainic acid-induces seizure activity. J. Neurochem. 73:229–236.

    PubMed  Google Scholar 

  24. Yuferov, V., Kroslak, T., Laforge, K. S., Zhou, Y., Ho, A., and Kreek, M. J. 2003. Differential gene expression in the rat caudate putamen after “binge” cocaine administration: advantage of triplicate microarray analysis. Synapse 48:157–169.

    PubMed  Google Scholar 

  25. Ishii, M., Hasimoto, S., Tsutsumi, S., Wada, Y., Matsushima, K., Kodama, T., and Aburatani, H. 2000. Direct comparison of GeneChip and SAGE on the quantitative accuracy in transcript profiling analysis. Genomics 68:136–143.

    PubMed  Google Scholar 

  26. Han, B. H. and Holtzman, D. M. 2000. BDNF protects the neonatal brain from hypoxia-ischemic injury in vivo via the Erk pathway. J. Neurosci. 20:5775–5781.

    PubMed  Google Scholar 

  27. Gorski, J. A., Zeiler, S. R., Tamowski, S., and Jones, K. R. 2003. Brain-derived neurotrophic factor is required for the maintenance of cortical dendrites. J. Neurosci. 23:6856–6865.

    PubMed  Google Scholar 

  28. Dent, M. A., Sumi, Y., Morris, R. J., and Seeley, P. J. 1993. Urokinase-type plasminogen activator expression by neurons and oligodendrocytes during process outgrowth in developing rat brain. Eur. J. Neurosci. 5:633–647.

    PubMed  Google Scholar 

  29. Kjoller, L. 2002. The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol. Chem. 383:5–19.

    PubMed  Google Scholar 

  30. Dash, P. K., Mach, S. A., and Moore, A. N. 2001. Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J. Neurosci. Res. 63:313–319.

    PubMed  Google Scholar 

  31. Beschorner, R., Schluesener, H. J., Nguyen, T. D., Magdolen, V., Luther, T., Pedal, I., Mattern, R., Meyermann, R., and Schwab, J. M. 2000. Lesion-associated accumulation of uPAR/CD87-expressing infiltrating granulocytes, activated microglial cells/macrophages and upregulation by endothelial cells following TBI and FCI in humans. Neuropathol. Appl. Neurobiol. 26:522–527.

    PubMed  Google Scholar 

  32. Dash, P. K., Moore, A. N., and Dixon, C. E. 1995. Spatial memory deficits, increased phosphorylation of the transcription factor CREB, and induction of the AP-1 complex following experimental brain injury. J. Neurosci. 15:2030–2039.

    PubMed  Google Scholar 

  33. Dragunow, M. and Robertson, H. A. 1988. Brain injury induces c-fos protein(s) in nerve and glial-like cells in adult mammalian brain. Brain Res. 455:295–299.

    PubMed  Google Scholar 

  34. Phillips, L. L. and Belardo, E. T. 1992. Expression of c-fos in the hippocampus following mild and moderate fluid percussion brain injury. J. Neurotrauma 9:323–333.

    PubMed  Google Scholar 

  35. Jorgensen, O. S., Hansen, L. I., Hoffman, S. W., Fulop, Z., and Stein, D. G. 1997. Synaptic remodeling and free radical formation after brain contusion injury in the rat. Exp. Neurol. 144:326–338.

    PubMed  Google Scholar 

  36. McIntosh, T. K. and Ferriero, D. 1992. Changes in neuropeptide Y after experimental traumatic brain injury in the rat. J. Cereb. Blood Flow Metab. 12:697–702.

    PubMed  Google Scholar 

  37. Shohami, E., Shapira, Y., Yadid, G., Reisfeld, N., and Yedgar, S. 1989. Brain phospholipase A2 is activated after experimental closed head injury in the rat. J. Neurochem. 53:1541–1546.

    PubMed  Google Scholar 

  38. Blaha, G. R., Raghupathi, R., Saatman, K. E., and McIntosh, T. K. 2000. Brain-derived neurotrophic factor administration after traumatic brain injury in the rat does not protect against behavioral or histological deficits. Neuroscience 99:483–493.

    PubMed  Google Scholar 

  39. Yang, K., Perez-Polo, J. R., Mu, X. S., Yan, H. Q., Xue, J. J., Iwamoto, Y., Liu, S. J., Dixon, C. E., and Hayes, R. 1996. Increased expression of brain-derived neurotrophic factor but not neurotrophin-3 mRNA in rat brain after cortical impact injury. J. Neurosci. Res. 44:157–164.

    PubMed  Google Scholar 

  40. Polazzi, E. and Contestabile, A. 2002. Reciprocal interactions between microglia and neurons: from survival to neuropathology. Rev. Neurosci. 13:221–242.

    PubMed  Google Scholar 

  41. O'Dell, D. M., Raghupathi, R., Crino, P. B., Eberwine, J. H., and McIntosh, T. K. 2000. Traumatic brain injury alters the molecular fingerprint of TUNEL-positive cortical neurons in vivo: a single-cell analysis. J. Neurosci. 20:4821–4828.

    PubMed  Google Scholar 

  42. Dash, P. K., Mach, S. A., and Moore, A. N. 2002. The role of extracellular signal-regulated kinase in cognitive and motor deficits following experimental traumatic brain injury. Neuroscience 114: 755–767.

    PubMed  Google Scholar 

  43. Domanska-Janik, K. 1996. Protein serine/threonine kinases (PKA, PKC and CaMKII) involved in ischemic brain pathology. Acta Neurobiol. Exp. 56:579–585.

    Google Scholar 

  44. Waxham, M. N., Grotta, J. C., Silva, A. J., Strong, R., and Aronowski, J. 1996. Ischemia-induced neuronal damage: a role for calcium/calmodulin-dependent protein kinase II. J. Cereb. Blood Flow Metab. 16:1–6.

    PubMed  Google Scholar 

  45. Jenkins, L. W., Moszynski, K., Lyeth, B. G., Lewelt, W., Dewitt, D. S., Allen, A., Dixon, C. E., Povlishock, J. T., Majewski, T. J., and Clifton, G. L. 1989. Increased vulnerability of the mildly traumatized rat brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Res. 477:211–224.

    PubMed  Google Scholar 

  46. Dash, P. K., Mach, S. A., and Moore, A. N. 2000. Regional expression and role of cyclooxygenase-2 following experimental traumatic brain injury. J. Neurotrauma 17:69–81.

    PubMed  Google Scholar 

  47. Colicos, M. A. and Dash, P. K. 1996. Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Res. 739:120–131.

    PubMed  Google Scholar 

  48. Nudo, R. J., Plautz, E. J., and Frost, S. B. 2001. Role of adaptive plasticity in recovery of function after damage to motor cortex. Muscle Nerve 24:1000–1019.

    PubMed  Google Scholar 

  49. Miller, L. P., Lyeth, B. G., Jenkins, L. W., Oleniak, L., Panchision, D., Hamm, R. J., Phillips, L. L., Dixon, C. E., Clifton, G. L., and Hayes, R. L. 1990. Excitatory amino acid receptor subtype binding following traumatic brain injury. Brain Res. 526:103–107.

    PubMed  Google Scholar 

  50. Abel, T., Nguyen, P. V., Barad, M., Deuel, T. A., Kandel, E. R., and Bourtchouladze R. 1997. Genetic demonstration of a role for PKA in the late phase of LTP and in hippocampus-based long-term memory. Cell 88:615–626.

    PubMed  Google Scholar 

  51. Masson, N., Willam, C., Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. 2001. Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J. 20:5197–5206.

    PubMed  Google Scholar 

  52. Wang, G. L., Jiang, B. H., Rue, E. A., and Semenza, G. L. 1995. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA. 92:5510–5514.

    PubMed  Google Scholar 

  53. Dobrogowska, D. H., Lossinsky, A. S., Tarnawski, M., and Vorbrodt, A. W. 1998. Increased blood-brain barrier permeability and endothelial abnormalities induced by vascular endothelial growth factor. J. Neurocytol. 27:163–173.

    PubMed  Google Scholar 

  54. Levy, A. P., Levy, N. S., Wegner, S., and Goldberg, M. A. 1995. Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. Biol. Chem. 270:13333–13340.

    PubMed  Google Scholar 

  55. Pugh, C. W. and Ratcliffe, P. J. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9:677–684.

    PubMed  Google Scholar 

  56. Birnbaum, S. G., Podell, D. M., and Arnsten, A. F. 2000. Noradrenergic alpha-2 receptor agonists reverse working memory deficits induced by the anxiogenic drug, FG7142, in rats. Pharmacol. Biochem. Behav. 67:397–403.

    PubMed  Google Scholar 

  57. Hertel, P., Fagerquist, M. V., and Svensson, T. H. 1999. Enhanced cortical dopamine output and antipsychotic-like effects of raclopride by alpha2 adrenoceptor blockade. Science 286: 105–107.

    PubMed  Google Scholar 

  58. Chaki, S., Kawashima, N., Suzuki, Y., Shimazaki, T., and Okuyama, S. 2003. Cocaine-and amphetamine-regulated transcript peptide produces anxiety-like behavior in rodents. Eur. J. Pharmacol. 464: 49–54.

    PubMed  Google Scholar 

  59. Kristensen, P., Judge, M. E., Thim, L., Ribel, U., Christjansen, K. N., Wulff, B. S., Clausen, J. T., Jensen, P. B., Madsen, O. D., Vrang, N., Larsen, P. J., and Hastrup, S. 1998. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 393:72–76.

    PubMed  Google Scholar 

  60. Rothman, R. B., Vu, N., Wang, X., and Xu, H. 2003. Endogenous CART peptide regulates mu opioid and serotonin 5-HT(2A) receptors. Peptides 24:413–417.

    PubMed  Google Scholar 

  61. Merched, A., Serot, J. M., Visvikis, S., Aguillon, D., Faure, G., and Siest, G. 1998. Apolipoprotein, E, transthyretin and actin in the CSF of Alzheimer's patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett. 425:225–228.

    PubMed  Google Scholar 

  62. Palha, J. A., Moreira, P., Wisniewski, T., Frangione, B., and Saraiva, M. J. 1996. Transthyretin gene in Alzheimer's disease patients. Neurosci. Lett. 204:212–214.

    PubMed  Google Scholar 

  63. Nesic, O., Svrakic, N. M., Xu, G. Y., McAdoo, D., Westlund, K. N., Hulsebosch, C. E., Ye, Z., Galante, A., Soteropoulos, P., Tolias, P., Young, W., Hart, R. P., and Peroz-Polo, J. R. 2002. DNA microarray analysis of the contused spinal cord: effect of NMDA receptor inhibition. J. Neurosci. Res. 68:406–423.

    PubMed  Google Scholar 

  64. Romano, J., Beni-Adani, L., Nissenbaum, O. L., Brenneman, D. E., Shohani, E., and Gozes, I. 2002. A single administration of the peptide NAP induces long-term protective changes against the consequences of head injury: gene Atlas aray analysis. J. Mol. Neurosci. 18:37–45.

    PubMed  Google Scholar 

  65. Imai, Y., Ibata, I., Ito, D., Ohsawa, K., and Kohsaka, S. 1996. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem. Biophys. Res. Commun. 224:855–862.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod K. Dash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dash, P.K., Kobori, N. & Moore, A.N. A Molecular Description of Brain Trauma Pathophysiology Using Microarray Technology: An Overview. Neurochem Res 29, 1275–1286 (2004). https://doi.org/10.1023/B:NERE.0000023614.30084.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000023614.30084.eb

Navigation