Skip to main content
Log in

Is the Volume-Regulated Anion Channel VRAC a “Water-Permeable” Channel?

  • Commentary
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The volume-regulated anion channel, VRAC, plays an important role in cell volume regulation. This channel is permeable for a wide variety of anions, amino acids, and organic osmolytes, including taurine. However, nothing is known about possible water permeability of this channel. Water permeability of endothelial cells is estimated from the initial rate of cell swelling because of a hypotonic challenge. As a result of simultaneous volume and current measurements, it will be shown that water permeability is decreased by inhibition of VRAC. It is concluded that water permeates VRAC and might be able to accelerate water transport by providing an additional permeation pathway for water. Therefore VRAC can be considered as a water-permeable, “wet” channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Pasantes-Morales, H. 1996. Volume regulation in brain cells: Cellular and molecular mechanisms. Metab. Brain Dis. 11: 187–204.

    Google Scholar 

  2. Nilius, B. and Droogmans, G. 2003. Amazing chloride channels: An overview. Acta Physiol. Scand. 177:119–147.

    Google Scholar 

  3. Nilius, B., Eggermont, J., Voets, T., and Droogmans, G. 1996.-Volume-activated Cl channels. Gen. Pharmacol. 27: 1131–1140.

    Google Scholar 

  4. Nilius, B., Voets, T., Eggermont, J., and Droogmans, G. 1999. VRAC: A multifunctional volume regulated anion channel in vascular endothelium. Pages 47–63 in Kozlowski, R. (ed.), Chloride channels, Oxford, UK: Isis Medical Media Limited.

    Google Scholar 

  5. Nilius, B., Eggermont, J., Voets, T., Buyse, G., Manolopoulos, V., and Droogmans, G. 1997. Properties of volume-regulated anion channels in mammalian cells. Prog. Biophys. Mol. Biol. 68: 69–119.

    Google Scholar 

  6. Okada, Y. 1997. Volume expansion-sensing outward-rectifier Cl channel: Fresh start to the molecular identity and volume sensor. Am. J. Physiol. 273:C755–C789.

    Google Scholar 

  7. Strange, K., Emma, F., and Jackson, P. S. 1996. Cellular and molecular physiology of volume-sensitive anion channels. Am. J. Physiol. 270:C711–C730.

    Google Scholar 

  8. Alexander, S. P. H. and Peters, J. A. 1999. Receptor and ion channel nomenclature supplement. Trends Pharmacol. Sci. 20 (suppl):92.

    Google Scholar 

  9. Okada, Y. and Maeno, E. 2001. Apoptosis, cell volume regulation and volume-regulatory chloride channels. Comp. Biochem. Physiol. Mol. Integr. Physiol. 130:377–383.

    Google Scholar 

  10. Okada, Y., Maeno, E., Shimizu, T., Dezaki, K., Wang, J., and Morishima, S. 2001. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J. Physiol. (Lond.) 532:3–16.

    Google Scholar 

  11. Eggermont, J., Trouet, D., Carton, I., and Nilius, B. 2001. Cellular function and control of volume-regulated anion channels. Cell Biochem. Biophys. 35:263–274.

    Google Scholar 

  12. Hisadome, K., Koyama, T., Kimura, C., Droogmans, G., Ito, Y., and Oike, M. 2002. Volume-regulated anion channels serve as an auto/paracrine nucleotide release pathway in aortic endothelial cells. J. Gen. Physiol. 119:511–520.

    Google Scholar 

  13. Droogmans, G., Prenen, J., Eggermont, J., Voets, T., and Nilius, B. 1998. Voltage-dependent block of endothelial volume-regulated anion channels by calix[4]arenes. Am. J. Physiol. 275: C646–C652.

    Google Scholar 

  14. Halm, D. R. 1998. Identifying swelling-activated channels from ion selectivity patterns. J. Gen. Physiol. 112:369–371.

    Google Scholar 

  15. Voets, T., Droogmans, G., Raskin, G., Eggermont, J., and Nilius, B. 1999. Reduced intracellular ionic strength as the initial trigger for activation of endothelial volume-regulated anion channels. Proc. Natl. Acad. Sci. USA 96:5298–5303.

    Google Scholar 

  16. Nilius, B., Prenen, J., Voets, T., Eggermont, J., and Droogmans, G. 1998. Reduction of intracellular ionic strength activates the volume-regulated chloride current in cultured bovine pulmonary endothelial cells. J. Physiol. (Lond.) 506:353–361.

    Google Scholar 

  17. Nilius, B., Voets, T., Prenen, J., Barth, H., Aktories, K., Kaibuchi, K., Droogmans, G., and Eggermont, J. 1999. Role of RhoA and Rho kinase in the activation of volume-regulated anion channels in bovine endothelial cells. J. Physiol. (Lond.) 516:67–74.

    Google Scholar 

  18. Van Driessche, W., De Smet, P., and Raskin, G. 1993. An automatic monitoring system for epithelial cell height. Pflügers Arch. Eur. J. Physiol. 425:164–171.

    Google Scholar 

  19. Sabirov, R. Z., Morishima, S., and Okada, Y. 1998. Probing the water permeability of ROMK1 and amphotericin B channels using Xenopus oocytes. Biochim. Biophys. Acta 1368:19–26.

    Google Scholar 

  20. Yasui, M., Hazama, A., Kwon, T. H., Nielsen, S., Guggino, W. B., and Agre, P. 1999. Rapid gating and anion permeability of an intracellular aquaporin. Nature 402:184–187.

    Google Scholar 

  21. Saparov, S. M., Kozono, D., Rothe, U., Agre, P., and Pohl, P. 2001. Water and ion permeation of aquaporin-1 in planar lipid bilayers: Major differences in structural determinants and stoichiometry. J. Biol. Chem. 276:31515–31520.

    Google Scholar 

  22. Schnitzer, J. E. and Oh, P. 1996. Aquaporin-1 in plasma membrane and caveolae provides mercury-sensitive water channels across lung endothelium. Am. J. Physiol. 270: H416–H422.

    Google Scholar 

  23. Heinke, S., Raskin, G., De Smet, P., Droogmans, G., Van Driessche, W., and Nilius, B. 1997. Simultaneous measurements of membrane capacitance and whole cell currents during cell swelling in macrovascular endothelium. Cell. Physiol. Biochem. 7:19–24.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilius, B. Is the Volume-Regulated Anion Channel VRAC a “Water-Permeable” Channel?. Neurochem Res 29, 3–8 (2004). https://doi.org/10.1023/B:NERE.0000010430.23137.be

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000010430.23137.be

Navigation