Skip to main content
Log in

Creating molecular diversity from antioxidants in Brazilian propolis. Combination of TOPS-MODE QSAR and virtual structure generation

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A QSAR model for antioxidative activity based on the Sub-Structural Molecular Design (TOPS-MODE) approach is developed for a series of compounds present in Brazilian propolis. This approach permitted the structural interpretation of the antioxidative activity of these compounds in terms of bond contributions. By these means we have identified the structural groups and regions that contribute to the antioxidative activity of the cinnamic acid and flavonoid derivatives present in the propolis. These results were then used to identify the positions and substituents to be used in a virtual compound generation experiment. Using this approach a total of 327 compounds were generated from which more than 70 are predicted to be more active than the most powerful antioxidants in the Brazilian propolis. From these 70 compounds less than 20 have been reported in the literature. Consequently, a high proportion of novel compounds with potential antioxidative activity has been identified by the current approach. This contributes to enhance the molecular diversity of the analogues of Brazilian propolis compounds with antioxidative properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheller, S., Wilczok, T., Imielski, S., Krol, W., Gabrys, J. and Shani J., Free-radical scavenging by ethanol extract of propolis, Int. J. Radiat. Biol., 57 (1990) 461–465.

    CAS  Google Scholar 

  2. Volpert, R. and Elstner, E. F., Biochemical activities of propolis extracts. 1. Standardization and antioxidative properties of ethanolic and aqueous derivatives, Z. Naturforsch., 48 (1993) 851–857.

    CAS  Google Scholar 

  3. Rao, C. V., Desai, D., Kaul, B., Amin A. and Reddy, B. S., Effect of caffeic acid-esters on carcinogen-induced mutagenicity and human colon adenocarcinoma cell-growth, Chem. Biol. Interact., 84 (1992) 277–290.

    Article  CAS  Google Scholar 

  4. Banskota, A. H., Tezuka, Y., Midorikawa, K., Matsushige, K. and Kadota, S., Two novel cytotoxic benzofuran derivatives from Brazilian propolis, J. Nat. Prod., 63 (2000) 1277–1279.

    Article  CAS  Google Scholar 

  5. Marcucci, M. C., Propolis — Chemical-composition, biological properties and therapeutic activity, Apidologie, 26 (1995) 83–99.

    CAS  Google Scholar 

  6. Burdock, G. A., Review of the biological properties and toxicity of bee propolis (propolis), Food Chem. Toxicol., 36 (1998) 347–363.

    Article  CAS  Google Scholar 

  7. Debiaggi, M., Tateo, F., Pagani, L., Luini, M. and Romero, E., Effects of propolis flavonoids on virus infectivity and replication, Microbiologica, 13 (1990) 207–213.

    CAS  Google Scholar 

  8. Dimov, V., Ivanovska, N., Bankova, V. and Popov, S., Immunomodulatory action of propolis. 4. Prophylactic activity against gram-negative infections and adjuvant effect of the water-soluble derivative, Vaccine, 10 (1992) 817–823.

    Article  CAS  Google Scholar 

  9. Ghisalberti, E. L., Propolis — Review, Bee World, 60 (1979) 59–84.

    CAS  Google Scholar 

  10. Hayashi, K., Komura, S., Isaji, N., Ohisi, N. and Yagi, K., Isolation of antioxidative compounds from Brazilian propolis: 3,4-dihydroxy-5-prenylcinnamic acid, a novel potent antioxidant, Chem. Pharm. Bull., 47 (1999) 1521–1524.

    CAS  Google Scholar 

  11. Horie, T., Shibata, K., Yamashita, K., Kawamura, Y. and Tsukayami, M., Studies of the selective O-alkylation and dealkylation of flavonoids. A convenient method for synthesizing 3,5,7-trihydroxy-6-methoxyflavones, Chem. Pharm. Bull., 45 (1997) 446–451.

    CAS  Google Scholar 

  12. Aga, H., Shibuya, T., Sugimoto, T., Nakajima, S. and Kurimoto, M., Isolation and identification of Antimicrobial compounds in Brazilian Propolis, Biosci. Biotech. Biochem., 58 (1994) 945–946.

    Article  CAS  Google Scholar 

  13. Fujimura, H., Sawada, T. and Kitagawa, I., 3-(4-Hydroxphenyl)-2-(E)-propenoic acid derivatives, Jpn. Kokai Tokkyo Koho, JP 60163841 Chem. Abstr., 104 (1985) 33867.

    Google Scholar 

  14. Okuno, I., Uchida, K., Sakurai, K. and Nakamura, M., Studies on choleretic constituents in Artemisia-Capillaris Thunb, Chem. Pharm. Bull., 36 (1988) 769–775.

    CAS  Google Scholar 

  15. Labbe, C., Rovirosa, J., Faini, F., Mahu., M., San-Martin, A. and Castillo, M., Secondary metabolites from Chilean Baccharis species, J. Na.t Prod., 49 (1986) 517–518.

    Article  CAS  Google Scholar 

  16. Schmitt, A., Telikepali, H. and Mitscher, L. A., Plicatin-B, the antimicrobial principle of Psoralea-Juncea, Phytochemistry, 30 (1991), 3569–3570.

    Article  CAS  Google Scholar 

  17. Shima, K., Hisada, S. and Inagaki, I., Studies on the constituents of Anodendron affine Durce. V. Isolation and structure of two new constituents, Yakugaku Zasshi, 92 (1972) 1410–1414.

    CAS  Google Scholar 

  18. Fuchino, H., Satoh, T., Tanaka, N., Chemical evaluation of Betula species in Japan. 3. Constituents of Betula maximowicziana, Chem. Pharm. Bull., 44 (1996) 1748–1753.

    CAS  Google Scholar 

  19. Kitagawa, I., Fukuda, Y., Yoshihara, M., Yamahara, J. and Yoshikawa, M., Capillartemisin A and B, two new choleretic principles from Artemisiae Capillaris Herba, Chem. Pharm. Bull., 31 (1983) 352–355.

    CAS  Google Scholar 

  20. Breton F. J. L., Gonzalez, G. A. and Ruiz S. O., Flavonoids of Centaurea arguta, An. R. Soc. Esp. Fis. Quim. Ser. B, 63 (1967) 703–710.

    Google Scholar 

  21. De Julian-Ortiz, J. V., Virtual Darwinian Drug Design: QSAR inverse problem, virtual combinatorial chemistry and computational screening, Comb. Chem. High Throughput Screen, 4 (2001) 295–310.

    CAS  Google Scholar 

  22. Gorse, D., Rees, A., Kaczorek, M. and Lahana, R., Molecular diversity and its analysis, Drug Discov. Today, 4 (1999) 257–264.

    Article  CAS  Google Scholar 

  23. Oprea, T. I., Gottfries, J., Sherbukhin, V., Svensson, P. and Kuhler, T. C., Chemical information management in drug discovery: Optimising the computational and combinatorial chemistry, J. Mol. Graph. Model, 18 (2000) 512.

    Article  CAS  Google Scholar 

  24. Gutierrez, Y. and Estrada, E., MODESLAB 1.0 (Molecular DEScriptors LABoratory) for Windows, Universidad de Santiago de Compostela, Spain, 2002.

    Google Scholar 

  25. Estrada, E., Peña, A. and García-Domenech, R., Designing sedative/hypnotic compounds from a novel substructural graph-theoretical approach, J. Comp.-Aided Mol. Des., 12 (1998) 583–595.

    Article  CAS  Google Scholar 

  26. Estrada, E. and Peña, A., In silico studies for the rational discovery of anticonvulsant compounds, Bioorg. Med. Chem., 8 (2000) 2755–2770.

    Article  CAS  Google Scholar 

  27. Estrada, E., Uriarte, E., Montero, A., Teijeira, M., Santana, L. and De Clercq, E., A novel approach for the virtual screening and rational design of anticancer compounds, J. Med. Chem., 43 (2000) 1975–1985.

    Article  CAS  Google Scholar 

  28. Estrada, E., On the topological sub-structural molecular design (TOSS-MODE) in QSPR/QSAR and drug design research, SAR QSAR Environ. Res., 11 (2000) 55–73.

    CAS  Google Scholar 

  29. Estrada, E. and Uriarte, E., Quantitative structure-toxicity relationships using TOPS-MODE. 1. Nitrobenzene toxicity to tetrahymena pyriformis, SAR QSAR Environ. Res., 12 (2001) 309–324.

    CAS  Google Scholar 

  30. Estrada, E., Molina, E. and Uriarte, E., Quantitative structure-toxicity relationships using Tops-Mode. 2. Neurotoxicity of a non-congeneric series of solvents, SAR QSAR Environ. Res., 12 (2001) 445–459.

    CAS  Google Scholar 

  31. Estrada, E., Uriarte, E., Gutierrez, Y. and Gonzalez, H., Quantitative structure-toxicity relationships using TOPS-MODE. 3. Structural factors influencing the permeability of commercial solvents through living human skin, SAR QSAR Environ. Res., 14 (2003) 145–163.

    Article  CAS  Google Scholar 

  32. Estrada, E., Spectral moments of the edge adjacency matrix in molecular graphs. 1. Definition and applications to the prediction of physical properties of alkanes, J. Chem. Inf. Comput. Sci., 36 (1996) 844–849.

    Article  CAS  Google Scholar 

  33. Estrada, E., Spectral moments of the edge adjacency matrix of molecular graphs. 2. Molecules containing heteroatoms and QSAR applications, J. Chem. Inf. Comput. Sci., 37 (1997) 320–328.

    Article  CAS  Google Scholar 

  34. Estrada, E., Spectral moments of the edge adjacency matrix of molecular graphs. 3. Molecules containing cycles, J. Chem. Inf. Comput. Sci., 38 (1998) 23–27.

    Article  CAS  Google Scholar 

  35. Wang, R., Gao, Y. and Lai, L., Calculating partition coefficient by atom-additive method, Persp. Drug Discov. Des., 19 (2000) 47–66.

    Article  CAS  Google Scholar 

  36. Ertl, P., Rohde, B. and Selzer, P., Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties, J. Med. Chem., 43 (2000) 3714–3717.

    Article  CAS  Google Scholar 

  37. Miller, K. J., Additivity methods in molecular polarizability, J. Am. Chem. Soc., 112 (1990) 8533–8542.

    Article  CAS  Google Scholar 

  38. Gasteiger, J. and Marsilli, M., A new model for calculating atomic charges in molcules, Tetrahedron. Lett., 34 (1978) 3181–3184.

    Article  Google Scholar 

  39. Bondi, A., van der Waals volumes and radii, J. Phys Chem, 68 (1964) 441–451.

    CAS  Google Scholar 

  40. Ghose, A. K. and Crippen, G. M., Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions, J. Chem. Inf. Comput. Sci., 27 (1987) 21–35.

    Article  CAS  Google Scholar 

  41. Estrada, E., Edge adjacency relationships and a novel topological index related to molecular volume, J. Chem. Inf. Comput. Sci, 35 (1995) 31–33.

    Article  CAS  Google Scholar 

  42. Estrada, E. and Molina, E., Novel local (fragment-based) topological molecular descriptors for QSPR/QSAR and molecular design, J. Mol. Graph. Modell., 20 (2001) 54–64.

    Article  CAS  Google Scholar 

  43. Estrada, E. and Molina, E., 'QSPR/QSAR by Graph Theoretical Descriptors beyond the Frontiers', in M. Diudea (ed.), QSPR/QSAR Studies by Molecular Descriptors, Nova Sci., New York, 2001, pp. 83–107.

    Google Scholar 

  44. Hotta, H., Sakamoto, H., Nagano, S., Osakai, T. and Tsujino, Y., Unusually large numbers of electrons for the oxidation of polyphenolic antioxidants, Biochim. Biophys. Acta, 1526 (2001) 159–167.

    CAS  Google Scholar 

  45. Hotta, H., Nagano, S., Ueda, M., Tsujino, Y., Koyama, J. and Osakai, T., Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation, Biochim. Biophys. Acta, 1572 (2002) 123–132.

    CAS  Google Scholar 

  46. Surh, Y.-J., Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances, Mut. Res., 428 (1999) 305–327.

    CAS  Google Scholar 

  47. Bors, W., Michel C., Stettmaier, K., Lu, Y. and Yeap Foo, L., Pulse radiolysis, electron paramagnetic resonance spectroscopy and theoretical calculations of caffeic acid oligomer radicals, Biochim. Biophys. Acta, 1620 (2003) 97–107.

    CAS  Google Scholar 

  48. Moon, J.-H. and Terao, J., Antioxidant activity of caffeic acid and dihydrocaffeic acid in lard and human low-density lioprotein, J. Agric. Food Chem., 46 (1998) 5062–6065.

    Article  CAS  Google Scholar 

  49. Silva, F. A. M., Borges, F., Guimarães, C., José, L. F. C., Lima, Matos, C. and Reis, S., Phenolic acids and derivatives: Studies on the relationship among structure, radical scavenging activity and physicochemical parameters, J. Agric. Food Chem., 48 (2000) 2122–2126.

    Article  CAS  Google Scholar 

  50. Raneva, V., Shimasaki, H., Ishida, Y., Ueta, N. and Niki, E., Antioxidant activity of 3,4-dihydroxyphenylacetic acid and caffeic acid in rat plasma, Lipids, 36 (2001) 1111–1116.

    CAS  Google Scholar 

  51. Bankova, V. S., Popov, S.S., Marekov, N.L., A study on flavonoids of propolis, J. Nat. Prod., 46 (1983) 471–474.

    Article  CAS  Google Scholar 

  52. Saija, A., Trombetta, D., Tomaino, A., Lo Cascio, R., Princi, P., Uccella, N., Bonina, F. and Castelli, F., 'In vitro' evaluation of the antioxidant activity and biomembrane interaction of the plant phenols oleuropein and hydroxytyrosol, Int. J. Pharm., 166 (1998) 123–133.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernesto Estrada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada, E., Quincoces, J.A. & Patlewicz, G. Creating molecular diversity from antioxidants in Brazilian propolis. Combination of TOPS-MODE QSAR and virtual structure generation. Mol Divers 8, 21–33 (2004). https://doi.org/10.1023/B:MODI.0000006804.97390.40

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006804.97390.40

Navigation