Skip to main content
Log in

Development of chemically modified glass surfaces for nucleic acid, protein and small molecule microarrays

  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Microarrays have become a widely used tool to investigate the living cell at different levels. DNA microarrays enable the expression analysis of thousand of genes simultaneously, while protein arrays investigate the properties and interactions of proteins with other proteins and with non-proteinaceous molecules. One crucial step in producing such microarrays is the permanent immobilization of samples on a solid surface. Our goal was to develop diverse linker systems capable of anchoring different biological samples, especially DNA and drug-like small molecules. We developed 6 different chemical surfaces having a 3-D-like linker system for biomolecule immobilization, and compared them to previously described immobilization strategies. The attachment chemistry utilizes the amino reactive properties of acrylic and epoxy functions. The capacity of the support was increased by creating a branching structure holding the reactive functions.The method of anchoring was investigated through a model reaction. From HPLC and mass spectrometry measurements we concluded that the covalent binding of DNA occurs through nucleobases. The tested systems offer the capability to permanently immobilize several biomolecular species in an array format.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnston, M., Gene chips: array of hope for understanding gene regulation, Curr. Biol., 8 (1998) 171–174.

    Google Scholar 

  2. Pollack, J.R., Perou, C.M., Alizadeh, A.A., Eisen, M.B., Pergamenschikov, A., Williams, C.F., Jeffrey, S.S., Botstein, D. and Brown, P.O., Genome-wide analysis of DNA copy-number changes using cDNA microarrays, Nature Genet., 23 (1999) 41–46.

    Google Scholar 

  3. Hacia, J.G., Fan, J.B., Ryder, O., Jin, L., Edgemon, K., Ghandour, G., Mayer, R.A., Sun, B., Hsie, L., Robbins, C.M., Brody, L.C., Wang, D., Lander, E.S., Lipshutz, R., Fodor, S.P. and Collins, F.S., Determination of ancestral alleles for human single-nucleotide polymorphisms using high-density oligonucleotide arrays, Nature Genet., 22 (1999) 164–167.

    Google Scholar 

  4. Dill, K., Stanker, L.H. and Young, C.R., Detection of salmonella in poultry using a silicon chip-based biosensor, J. Biochem. Biophys. Methods, 41 (1999) 61–67.

    Google Scholar 

  5. Zvara, A., Hackler Jr., L., Nagy, B.Z., Micsik, T. and Puskás, L.G., New molecular methods for classification, diagnosis and therapy prediction of hematological malignancies, Pathol. Oncol. Res., 8 (2002) 231–240.

    Google Scholar 

  6. Ónody, A., Zvara, A., Hackler Jr., L., Vígh, L., Ferdinandy, P. and Puskás, L.G., Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study, FEBS Letters, 536 (2003) 35–40.

    Google Scholar 

  7. Kurian, K.M., Watson, C.J. and Wyllie A.H., DNA chip technology, J. Pathol., 187 (1999) 267–271.

    Google Scholar 

  8. Drmanac, S., Kita, D., Labat, I., Hauser, B., Schmidt, C., Burczak, J.D. and Drmanac R., Accurate sequencing by hybridization for DNA diagnostics and individual genomics, Nat. Biotech., 16 (1998) 54–58.

    Google Scholar 

  9. Milosavljevic, A., Savkovic, S., Crkvenjakov, R., Salbego, D., Serrato, H., Kreuzer, H., Gemmell, A., Batus, S., Grujic, D,. Carnahan, S., Paunesku, T. and Tepavcevic J., DNA sequence recognition by hybridization to short oligomers: experimental verification of the method on the E. coli genome, Genomics, 37 (1996) 77–86.

    Google Scholar 

  10. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P. and Fodor, S.P.A., Light-Generated Oligonucleotide Arrays for Rapid DNA Sequence Analysis, Proc. Natl. Acad. Sci. USA. 91 (1994) 5022–5026.

    Google Scholar 

  11. Hughes, T.R., Mao, M., Jones, A.R., Burchard, J., Marton, M.J., Shannon, K.W., Lefkowitz, S.M., Ziman, M., Schelter, J.M., Meyer, M.R., Kobayashi, S., Davis, C., Dai, H., He, Y.D., Stephaniants, S.B., Cavet, G., Walker, W.L., West, A., Coffey, E., Shoemaker, D.D., Stoughton, R., Blanchard, A.P., Friend, S.H. and Linsley, P.S., Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer, Nat. Biotech., 19 (2001) 342–347.

    Google Scholar 

  12. Lal, S.P., Christopherson, R.I. and dos Remedios C.G., Antibody arrays: an embryonic but rapidly growing technology, Drug Discov Today, 7 (2002) (18 Suppl): S143–9.

    Google Scholar 

  13. MacBeath, G. Protein microarrays and proteomics, Nat. Genet., 32 (2002) Suppl: 526–32.

    Google Scholar 

  14. Khandurina, J. and Guttman, A., Microchip based HTS analysis of combinatorial libraries, Curr. Opin. Chem. Biol. 6 (2002) 359–366.

    Google Scholar 

  15. Ferraton, N., Delair, T., Laayoun, A., Cros, P. and Mandrand B., Covalent immobilization of nucleic acid probes onto reactive synthetic polymers, J. Appl. Polym., Sci. 66 (1997) 233–242.

    Google Scholar 

  16. Rogers, Y.H., Jiang-Baucom, P., Huang, Z.J., Bogdanov, V., Anderson, S. and Boyce-Jacino, M.T., Immobilization of oligonucleotides onto a glass support via disulfide bonds: A method for preparation of DNA microarrays, Anal. Biochem., 266 (1999) 23–30.

    Google Scholar 

  17. Joos, B., Kuster, H. and Cone R., Covalent attachment of hybridizable oligonucleotides to glass supports, Anal. Biochem., 247 (1997) 96–101.

    Google Scholar 

  18. Rasmussen, S.R., Larsen, M.R., and Rasmussen S.E., Covalent immobilization of DNA onto polystyrene microwells: the molecules are only bound at the 5' end, Anal. Biochem., 198 (1991) 138–142.

    Google Scholar 

  19. Salo, H., Virta, P., Hakala, H., Prakash, T.P., Kawasaki, A.M., Manoharan, M. and Lonnberg H., Aminooxy functionalized oligonucleotides: preparation, on-support derivatization, and postsynthetic attachment to polymer support, (1999) Bioconjug. Chem., 10, 815–823.

    Google Scholar 

  20. McGall, G., Labadie, J., Brock, P., Wallraff, G., Nguyen, T. and Hinsberg W., Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists, Proc. Natl. Acad. Sci. U.S.A., 93 (1996) 13555–13560.

    Google Scholar 

  21. Beier, M. and Hoheisel, J.D., Versatile derivatisation of solid support media for covalent bonding on DNA-microchips, Nucleic Acids Res., 27 (1999) 1970–1977.

    Google Scholar 

  22. Kele, Z., Janáky, T., Mészáros, T., Fehér, A., Dudits, D. and Szabó, P. T., Capillary chromatography/microelectrospray mass spectrometry used for the identification of putative cyclin-dependent kinase inhibitory protein inMedicago, Rapid Commun Mass Spectrom., 12 (1998) 1564–1568.

    Google Scholar 

  23. Darvas, F. and Kovács, L., CMT: A solution phase combinatorial approach. Synthesis and yield prediction of phenazins. In J. P. Devlin (ed.), High-Throughput Screening, Marcel Dekker Inc., New York, (1997) 223–242.

    Google Scholar 

  24. Darvas, F., Dorman, G., Ñrge, L., Szabó, I., Rónai, Z. and Sasváry-Székely, M., Combinatorial Chemistry. Facing the Challenge of Chemical Genomics, Pure Appl. Chem., 73 (2001) 1487–1498.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László G. Puskás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hackler, L., Dormán, G., Kele, Z. et al. Development of chemically modified glass surfaces for nucleic acid, protein and small molecule microarrays. Mol Divers 7, 25–36 (2003). https://doi.org/10.1023/B:MODI.0000006534.36417.06

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MODI.0000006534.36417.06

Navigation