Skip to main content
Log in

Strict Quantizations of Symplectic Manifolds

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce the notion of a strict quantization of a symplectic manifold and show its existence under a topological condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A. and Sternheimer, D.: Deformation theory and quantization, I. II, Ann. Phys. 110 (1978), 62–110, 111-151.

    Google Scholar 

  2. Blanchard, E.: Subtriviality of continuous fields of nuclear C*-algebras (with Appendix by E. Kirchberg), J. reine angnew. Math. 489 (1997), 133–149.

    Google Scholar 

  3. Bott, R. and Tu, L.: Differential Forms in Algebraic Topology, Springer-Verlag, New York, Heidelberg, 1982.

    Google Scholar 

  4. De Wilde, M. and Lecomte, P. B. A.: Existence of star-product and of formal deformations in Poisson Lie algebra of arbitrary symplectic manifold, Lett. Math. Phys. 7 (1983), 487–496.

    Google Scholar 

  5. Dixmier, J.: C*-algebras, North-Holland, Amsterdam, 1977.

    Google Scholar 

  6. Fedosov, B. V.: Deformation Quantization and Index Theorem, Akademie-Verlag, Berlin,1996.

  7. Gerstenhaber, M.: On the deformation of rings and algebras, Ann. Math. 79 (1964),59–103.

    Google Scholar 

  8. Gompf, R.: A new construction of symplectic manifolds, Ann. Math. 142 (1995), 527–595.

    Google Scholar 

  9. Kirchberg, E. and Wassermann, S.: Operations on continuous bundles of C*-algebras,Math. Ann. 303 (1995), 677–697.

    Google Scholar 

  10. Kirchberg, E. and Wassermann, S.: Exact groups and continuous bundles of C*-algebras,Math. Ann. 315 (1999), 169–203.

    Google Scholar 

  11. Klimek, S. and Lesniewski, A.: Quantum Riemann surfaces: II. The discrete series, Lett. Math. Phys. 24 (1992), 125–139.

    Google Scholar 

  12. Moser, J. K.: On the volume elements on manifolds, Trans. Amer. Math. Soc. 120 (1965),280–296.

    Google Scholar 

  13. Natsume, T.: C*-algebraic deformation quantization of closed Riemann surfaces, In: J. Cuntz and S. Echterhodd (eds), Proc. SNB-Workshopon C*-algebras, Münster,Germany, 1999, pp. 142–150.

  14. Natsume, T. and Nest, R.: Topological approach to quantum surfaces, Comm. Math. Phys. 202 (1999), 65–87.

    Google Scholar 

  15. Omori, H., Maeda, Y. and Yoshioka, A.: Weyl manifolds and deformation quantization,Adv. Math. 85 (1991), 224–255.

    Google Scholar 

  16. Ozawa, N.: Amenable actions and exactness for discrete groups, C.R. Acad. Sci. Paris Sér. I Math. 330 (2000), 691–695, math.OA/0002185.

    Google Scholar 

  17. Podleś, P.: Quantum spheres, Lett. Math. Phys. 14 (1987), 193–202.

    Google Scholar 

  18. Rieffel, M. A.: Continuous fields of C*-algebras coming from group cocycles and actions,Math. Ann. 283 (1989), 631–643.

    Google Scholar 

  19. Rieffel, M. A.: Deformation quantization for Heisenberg manifolds, Comm. Math. Phys. 122 (1989), 531–562.

    Google Scholar 

  20. Sheu, A. J.-L.: Quantization of the Poisson SU(2) and its Poisson homogeneous space-the 2-sphere, Comm. Math. Phys. 135 (1991), 217–232.

    Google Scholar 

  21. Shubin, M. A.: Pseudodifferential Operators and Spectral Theory, Springer-Verlag, Berlin, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Natsume, T., Nest, R. & Peter, I. Strict Quantizations of Symplectic Manifolds. Letters in Mathematical Physics 66, 73–89 (2003). https://doi.org/10.1023/B:MATH.0000017652.90999.d8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MATH.0000017652.90999.d8

Navigation