Skip to main content
Log in

Planar Manhattan Locally Minimal and Critical Networks

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

One-dimensional branching extremals of Lagrangian-type functionals are considered. Such extremals appear as solutions to the classical Steiner problem on a shortest network, i.e., a connected system of paths that has the smallest total length among all the networks spanning a given finite set of terminal points in the plane. In the present paper, the Manhattan-length functional is investigated, with Lagrangian equal to the sum of the absolute values of projections of the velocity vector onto the coordinate axes. Such functionals are useful in problems arising in electronics, robotics, chip design, etc. In this case, in contrast to the case of the Steiner problem, local minimality does not imply extremality (however, each extreme network is locally minimal). A criterion of extremality is presented, which shows that the extremality with respect to the Manhattan-length functional is a global topological property of networks. Bibliography: 95 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. D. Aleksandrov, Interior Geometry of Convex Surfaces [in Russian], OGIZ, Moscow (1948).

    Google Scholar 

  2. T. V. Anikeeva, “Closed local minimal networks on the surfaces of polyhedra,” Vestnik MGU (1999).

  3. K. Bopp, “Über das kurzeste Verbindungssystem zwischen vier Punkten,” PhD Thesis, Univ. Göttingen (1879).

  4. M. Brazil, J. Cole, J. H. Rubinstein, A. D. Thomas, J. F. Weng, and N. C. Wormald, “Full minimal Steiner trees on lattice sets,” Preprint, Dept. Math., Univ. Melbourne.

  5. M. Brazil, J. H. Rubinstein, A. D. Thomas, J. F. Weng, and N. C. Wormald, “Minimal Steiner trees for 2k × 2k square lattices,” J. Combin. Theory, accepted for publication.

  6. M. Brazil, J. H. Rubinstein, A. D. Thomas, J. F. Weng, and N. C. Wormald, “Minimal Steiner trees for generalizid checkerboards,” Preprint, Dept. Math., Univ. Melbourne.

  7. M. Brazil, J. H. Rubinstein, A. D. Thomas, J. F. Weng, and N. C. Wormald, “Minimal Steiner trees for rectangular arrays of lattice points,” Research Report No. 24, Dept. Math., Univ. Melbourne (1995).

  8. M. Besson and A. Tromba, “The cusp catastrophe of Thom in bifurcation of minimal surfaces,” Manuscripta Math., 46, 273–307 (1984).

    Google Scholar 

  9. D. Cieslik, “The Steiner Ratio of Metric Spaces,” Inst. Math. CS, Ernst-Moritz-Arndt Univ., Greifswald Preprint.

  10. D. Cieslik, Steiner Minimal Trees, Kluwer Academic Publishers (1998).

  11. D. Cieslik, “Bäume minimaler Länger in der Normierten Ebene,” 27. Int. Wiss. Koll., Ilmenau 1982, Het 5, 3–6 (1982).

    Google Scholar 

  12. D. Cieslik, “Using Hadwiger numbers in networks design,” DIMACS Ser. Disc. Math. Theor. Comp. Sci., 40, 59–77 (1998).

    Google Scholar 

  13. R. C. Clark, “Communication networks, soap films, and vectors,” Phys. Ed., 16, 32–37 (1981).

    Google Scholar 

  14. E. J. Cockayne, “On the Steiner problem,” Canad. J. Math., 10, 431–450 (1967).

    Google Scholar 

  15. F. R. K. Chung and R. L. Graham, “Steiner trees for ladders,” Ann. Disc. Math., 2, 173–200 (1978).

    Google Scholar 

  16. F. R. K. Chung, M. Gardner, and R. L. Graham, “Steiner trees on a checkerboard,” Math. Mag., 62, 83–96 (1989).

    Google Scholar 

  17. Dao Chong Thi and A. T. Fomenko, Minimal Surfaces and Plateau Problem [in Russian], Nauka, Moscow (1987).

    Google Scholar 

  18. B. Delaunay, “Sur la sphère vide,” Izv. Akad. Nauk SSSR, Ser. VII, Otd. Mat. Est. Nauk, 7, 793–800 (1934).

  19. E. W. Dijkstra, “A note on two problems with connection with graphs,” Numer. Math., 1, 269–271 (1959).

    Google Scholar 

  20. D. Z. Du, “On Steiner ratio conjectures,” Manuscript, Inst. Appl. Math. Academia Sinica, Beijing (1989).

    Google Scholar 

  21. D. Z. Du and F. K. Hwang, “A new bound for the Steiner ratio,” Trans. Amer. Math. Soc., 278, 137–148 (1983).

    Google Scholar 

  22. D. Z. Du and F. K. Hwang, “A proof of Gilbert-Pollak's conjecture on the Steiner ratio,” DIMACS Technical Report (1990).

  23. D. Z. Du and F. K. Hwang, “An approach for proving lower bounds: solution of Gilbert-Pollak's conjecture on the Steiner ratio,” in: Proc. 31st Annual Symp. Found. Comp. Science (1990).

  24. D. Z. Du, F. K. Hwang, and S. C. Chao, “Steiner minimal trees for points on a circle,” Proc. Amer. Math. Soc., 95, 613–618 (1985).

    Google Scholar 

  25. D. Z. Du, F. K. Hwang, and J. F. Weng, “Steiner minimal trees for points on a zig-zag lines,” Trans. Amer. Math. Soc., 278, 149–156 (1983).

    Google Scholar 

  26. D. Z. Du, F. K. Hwang, and J. F. Weng, “Steiner minimal trees for regular polygons,” Disc. Comp. Geom., 2, 65–84 (1987).

    Google Scholar 

  27. D. Z. Du, F. K. Hwang, and E. N. Yao, “The Steiner ratio conjecture is true for five points,” J. Combin Th., Ser. A38, 230–240 (1985).

    Google Scholar 

  28. D. Z. Du, F. K. Hwang, G. D. Song, and G. T. Ting, “Steiner minimal trees on sets of four points,” Disc. Comp. Geom., 2, 401–414 (1987).

    Google Scholar 

  29. A. L. Edmonds, J. H. Ewing, and R. S. Kulkarni, “Regular tesselations of surfaces and (p, q, 2)-triangle groups,” Ann. Math., 166, 113–132 (1982).

    Google Scholar 

  30. P. Fermat, Abhandlungen über Maxima und Minima (Klassiker Exakt. Wiss., 238), Oswalds (1934).

  31. A. T. Fomenko, The Plateau Problem, Gordon and Breach, New York (1989).

    Google Scholar 

  32. A. T. Fomenko, Variational Problems in Topology, Gordon and Breach, New York (1990).

    Google Scholar 

  33. A. T. Fomenko and D. B. Fuchs, Course in Homotopic Topology [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  34. R. L. Francis, “A note on the optimum location of new machines in existing plant layouts,” J. Indust. Engrg., 14, 57–59 (1963).

    Google Scholar 

  35. M. R. Garey and D. S. Johnson, “The rectilinear Steiner problem is NP-complete,” SIAM J. Appl. Math., 32, 826–834 (1977).

    Google Scholar 

  36. M. R. Garey, R. L. Graham, and D. S. Johnson, “Some NP-complete geometric problems,” in: Eighth Annual Symp. Theory Comput. (1976), pp. 10–22.

  37. C. F. Gauss, “Briefwechsel Gauss-Schuhmacher,” in: Werke, Bd. X,1, Göttingen (1917), pp. 459–468.

    Google Scholar 

  38. G. Georgakopoulos and C. H. Papadimitriou, “The 1-Steiner problem,” J. Algorithm, No. 8, 122–130 (1987).

    Google Scholar 

  39. E. N. Gilbert and H. O. Pollak, “Steiner minimal trees,” SIAM J. Appl. Math., 16, 1–29 (1968).

    Google Scholar 

  40. A. Gray, Tubes, Addison-Wesley Publ. Comp. (1990).

  41. D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen, Springer-Verlag (1968).

  42. M. Hanan, “On Steiner's problem with rectilinear distance,” SIAM J. Appl. Math., 14, 255–265 (1966).

    Google Scholar 

  43. A. Heppes, “Isogonal spherischen Netze,” Ann. Univ. Sci., Budapest, Sect. Math., 7, 41–48 (1964).

    Google Scholar 

  44. S. Hildebrandt and A. Tromba, The Parsimonious Universe, Springer-Verlag, New York (1996).

    Google Scholar 

  45. Hong Van Le, “Minimal Φ-Lagrangian surfaces in almost Hermitian manifolds,” Mat. Sb., 180, 924–936 (1989).

    Google Scholar 

  46. Hong Van Le, “Relative calibration and the problem of stability of minimal surfaces,” Lect. Notes Math., 1463, 245–262 (1990).

    Google Scholar 

  47. F. K. Hwang, “On Steiner minimal trees with rectilinear distance,” SIAM J. Appl. Math., 30, 104–114 (1976).

    Google Scholar 

  48. F. K. Hwang, “A linear time algorithm for full Steiner trees,” Oper. Res. Lett., 5, 235–237 (1986).

    Google Scholar 

  49. F. K. Hwang and J. F. Weng, “Hexagonal coordinate systems and Steiner minimal trees,” Disc. Math., 62, 49–57 (1986).

    Google Scholar 

  50. F. K. Hwang, D. Richards, and P. Winter, The Steiner's Tree Problem, Elsevier Science Publishers (1992).

  51. A. O. Ivanov, “Calibration forms and new examples of globally minimal surfaces,” Adv. Soviet Math., 15, 235–267 (1993).

    Google Scholar 

  52. A. O. Ivanov, “Geometry of planar local minimal binary trees,” Mat. Sb., 186, 45–76 (1995).

    Google Scholar 

  53. A. O. Ivanov, Hong Van Le, and A. A. Tuzhilin, “Locally minimal and critical networks in the plane with Banach-Minkowski metrics,” in preparation.

  54. A. O. Ivanov and A. A. Tuzhilin, “Solution of the Steiner problem for convex boundaries,” Usp. Mat. Nauk, 45, 207–208 (1990).

    Google Scholar 

  55. A. O. Ivanov and A. A. Tuzhilin, “The Steiner problem for convex boundaries or flat minimal networks,” Mat. Sb., 182, 1813–1844 (1990).

    Google Scholar 

  56. A. O. Ivanov and A. A. Tuzhilin, “Geometry of minimal networks and one-dimensional Plateau problem,” Usp. Mat. Nauk, 47,No. 2 (284), 53–115 (1992).

    Google Scholar 

  57. A. O. Ivanov and A. A. Tuzhilin, “The Steiner problem for convex boundaries, 1; 2,” Adv. Soviet. Math., 15, 15–131 (1993).

    Google Scholar 

  58. A. O. Ivanov and A. A. Tuzhilin, Minimal Networks. The Steiner Problem and Its Generalizations, CRC Press, Boca Raton (1994).

    Google Scholar 

  59. A. O. Ivanov and A. A. Tuzhilin, “Some problems concerning minimal networks,” Int. J. Shape Modeling, 1, 81–107 (1994).

    Google Scholar 

  60. A. O. Ivanov and A. A. Tuzhilin, “Classification of minimal skeleta with regular boundaries,” Usp. Mat. Nauk, 51,No. 4, 157–158 (1996).

    Google Scholar 

  61. A. O. Ivanov and A. A. Tuzhilin, “Geometry of planar linear trees,” Usp. Mat. Nauk, 51,No. 2, 161–162 (1996).

    Google Scholar 

  62. A. O. Ivanov and A. A. Tuzhilin, “Twisting number of planar linear trees,” Mat. Sb., 187,No. 8, 41–92 (1996).

    Google Scholar 

  63. A. O. Ivanov and A. A. Tuzhilin, “Geometry of the set of minimal networks with a given topology and a fixed boundary,” Izv. Ross. Akad. Nauk, 61,No. 6, 119–152 (1997).

    Google Scholar 

  64. A. O. Ivanov and A. A. Tuzhilin, “Planar local minimal binary trees with convex, quasiregular, and regular boundaries,” Preprint no. 490, Rheinische Friedrich-Wilhelms Universität Bonn, Sonderforschungsbereich 256 (1996).

    Google Scholar 

  65. A. O. Ivanov and A. A. Tuzhilin, “Geometry and topology of local minimal 2-trees,” Bol. Soc. Bras. Mat., 28, 103–139 (1997).

    Google Scholar 

  66. A. O. Ivanov and A. A. Tuzhilin, Branching Solutions of One-Dimensional Variational Problems, World Publisher Press, in preparation.

  67. A. O. Ivanov and A. A. Tuzhilin, Branching Geodesics. Geometrical Theory of Local Minimal Networks (1999).

  68. V. Jarnik and M. Kössler, “O minimalnich grafeth obeahujicich n danijch bodu,” Cas. Pest. Mat. Fys., 63, 223–235 (1934).

    Google Scholar 

  69. G. A. Karpunin, “An analog of Morse theory for planar linear networks and generalized Steiner problem,” Mat. Sb., 191,No. 2, 64–90 (2000).

    Google Scholar 

  70. W. Klingenberg, Lectures on Closed Geodesics, Springer (1978).

  71. S. Kobayashi and K. Nomizu, Foundations of Differential Geometry. I, II, Interscience Publ., New York-London (1963, 1969).

    Google Scholar 

  72. J. B. Kruskal, “On the shortest spanning subtree of a graph and traveling salesman problem,” Proc. Amer. Math. Soc., 7, 48–50 (1956).

    Google Scholar 

  73. H. W. Kuhn, “Steiner's problem revisited,” in: Studies in Optimization (Studies Math., 10), G. B. Dantzig and B. C. Eaves (eds.), Math. Assoc. Amer. (1975), pp. 53–70.

  74. G. Lawlor and F. Morgan, “Minimizing cones and networks: immisceble fluids, norms, and calibrations,” in: Computing Optimal Geometries (Selected Lect. Math.), J. Taylor (ed.), Amer. Math. Soc. (1991).

  75. G. Lawlor and F. Morgan, “Paired calibrations applied to soap films, immisceble fluids, and surfaces or networks minimizing other norms,” Pacific J. Math., 166, 55–83 (1994).

    Google Scholar 

  76. Z. A. Melzak, “On the problem of Steiner,” Canad. Math. Bull., 4, 143–148 (1960).

    Google Scholar 

  77. Z. A. Melzak, Companion to Concrete Mathematics, Wiley-Interscience, New York (1973).

    Google Scholar 

  78. A. S. Mishchenko and A. T. Fomenko, Lections on Differential Geometry and Topology [in Russian], Moscow State Univ., Moscow (1980).

    Google Scholar 

  79. F. Morgan and J. Hass, “Geodesic nets on the 2-sphere,” Proc. Amer. Math. Soc., 124, 3843–3850 (1996).

    Google Scholar 

  80. O. Ore, Theory of Graphs (Colloq. Publ., 38), Amer. Math. Soc., Providence (1962).

    Google Scholar 

  81. H. O. Pollak, “Some remarks on the Steiner problem,” J. Combin. Thy., Ser. A24, 278–295 (1978).

    Google Scholar 

  82. F. Preparata and M. Shamos, Computational Geometry. An Introduction, Springer-Verlag, New York (1985).

    Google Scholar 

  83. R. C. Prim, “Shortest connecting networks and some generalizations,” BSTJ, 36, 1389–1401 (1957).

    Google Scholar 

  84. D. S. Richards and J. S. Salowe, “A linear-time algorithm to construct a rectilinear Steiner minimal tree for k-extremal point sets,” Algorithmica, 7, 247–276 (1992).

    Google Scholar 

  85. J. H. Rubinstein and D. A. Thomas, “The Steiner ratio conjecture for six points,” J. Combin. Thy., Ser. A58, 54–77 (1991).

    Google Scholar 

  86. J. H. Rubinstein and D. A. Thomas, “Graham's problem on shortest networks for points on a circle,” Algorithmica, 7, 193–218 (1992).

    Google Scholar 

  87. J. H. Rubinstein and D. A. Thomas, “A variational approach to the Steiner network problem,” Ann. Oper. Res., 33, 481–499 (1991).

    Google Scholar 

  88. M. I. Shamos, “Computational geometry,” Ph. D. Thesis, Dept. Comput. Sci., Yale Univ. (1978).

  89. W. D. Smith, “How to find Steiner minimal trees in Euclidean d-space,” Algorithmica, 7, 137–177 (1992).

    Google Scholar 

  90. M. V. Pronin, “Locally minimal networks on Riemannian manifolds of negative sectional curvature,” Vestnik MGU, No. 5, 12–16 (1998).

    Google Scholar 

  91. A. A. Tuzhilin, “Morse type indices of minimal surfaces in ℝ3 and ℍ3,” Izv. Akad. Nauk SSSR, No. 3, 581–607 (1991).

    Google Scholar 

  92. A. A. Tuzhilin and A. T. Fomenko, Elements of Geometry and Topology of Minimal Surfaces in Three-Dimensional Space (Transl. Math. Monographs, 93), Amer. Math. Soc. (1992).

  93. D. A. Thomas, J. H. Rubinstein, and T. Cole, “The Steiner minimal network for convex configuration,” Univ. Melbourne, Depart. Math., Research report, Preprint No. 15 (1991).

  94. A. A. Vdovina and E. N. Selivanova, “Locally minimal networks on the surfaces of constant negative curvature,” Vestnik MGU (to appear).

  95. M. Zacharias, “Elementargeometrie und elementare nicht-Euklidische geometrie in synthetischen Behandlung,” in: Encyklopädie der Mathematischen Wissenschaften, Bd. 3, Pt. 1, Teubner, Leipzig (1907–1910), pp. 859–1172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, A.O., Moscow State University, H.V.L. & Tuzhilin, A.A. Planar Manhattan Locally Minimal and Critical Networks. Journal of Mathematical Sciences 119, 55–70 (2004). https://doi.org/10.1023/B:JOTH.0000008741.99645.42

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOTH.0000008741.99645.42

Keywords

Navigation