Skip to main content
Log in

Interrogating Mouse Mammary Cancer Models: Insights from Gene Expression Profiling

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Numerous mouse models for mammary cancer have been developed and characterized based upon their biological, molecular, and histopathological features. In an effort to dissect the molecular anatomy of such models and compare their gene expression profiles to those of human breast cancer, six models representing various oncogenic pathways have been investigated using cDNA microarray technology. Results of these analyses are presented and discussed in the context of technological challenges presented by analyzing data on such a large scale. Further expression profiling coupled with emerging proteomic technologies will more completely define and distinguish mouse models of mammary cancer from each other and provide a comprehensive basis for comparing such models with the human disease they are intended to represent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. American Cancer Society (2003). Cancer Facts and Figures 2003, American Cancer Society, Altanta, GA.

    Google Scholar 

  2. American Cancer Society (2002). Breast Cancer Facts and Figures 2001–2002, American Cancer Society, Atlanta, GA.

    Google Scholar 

  3. A. S. Ketcham and W. F. Sindelar (1975). Risk factors in breast cancer. Prog. Clin. Cancer 6:99–114.

    Google Scholar 

  4. J. Russo I. H. and Russo (1999). Cellular basis of breast cancer susceptibility. Oncol. Res. 11:169–178.

    Google Scholar 

  5. K. L. Nathanson, R. Wooster, B. L. Weber, and K. N. Nathanson (2001). Breast cancer genetics: What we know and what we need. Nat. Med. 7:552–556.

    Google Scholar 

  6. M. O. Nicoletto, M. Donach, A. De Nicolo, G. Artioli, G. Banna, and S. Monfardini (2001). BRCA-1 and BRCA-2 mutations as prognostic factors in clinical practice and genetic counselling. Cancer Treat. Rev. 27:295–304.

    Google Scholar 

  7. P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki (2000). Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med. 343:78–85.

    Google Scholar 

  8. B. Vogelstein, E. R. Fearon, S. R. Hamilton, S. E. Kern, A. C. Preisinger, M. Leppert, Y. Nakamura, R. White, A. M. Smits, and J. L. Bos (1988). Genetic alterations during colorectal-tumor development. N. Engl. J. Med. 319:525–532.

    Google Scholar 

  9. C. M. Perou, S. S. Jeffrey, R. M. van de, C. A. Rees, M. B. Eisen, D. T. Ross, A. Pergamenschikov, C. F. Williams, S. X. Zhu, J. C. Lee, D. Lashkari, D. Shalon, P. O. Brown, and D. Botstein (1999). Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. Proc. Natl. Acad. Sci. U.S.A. 96:9212–9217.

    Google Scholar 

  10. C. M. Perou, T. Sorlie, M. B. Eisen, R. M. van de, S. S. Jeffrey, C. A. Rees, J. R. Pollack, D. T. Ross, H. Johnsen, L. A. Akslen, O. Fluge, A. Pergamenschikov, C. Williams, S. X. Zhu, P. E. Lonning, A. L. Borresen-Dale, P. O. Brown, and D. Botstein (2000). Molecular portraits of human breast tumours. Nature 406:747–752.

    Google Scholar 

  11. T. Sorlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M. B. Eisen, R. M. van de, S. S. Jeffrey, T. Thorsen, H. Quist, J. C. Matese, P. O. Brown, D. Botstein, L. P. Eystein, and A. L. Borresen-Dale (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. U.S.A. 98:10869–10874.

    Google Scholar 

  12. L. J. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, H. L. Peterse, K. K. van der, M. J. Marton, A. T. Witteveen, G. J. Schreiber, R. M. Kerkhoven, C. Roberts, P. S. Linsley, R. Bernards, and S. H. Friend (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536.

    Google Scholar 

  13. S. Gruvberger, M. Ringner, Y. Chen, S. Panavally, L. H. Saal, A. Borg, M. Ferno, C. Peterson, and P. S. Meltzer (2001). Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res. 61:5979–5984.

    Google Scholar 

  14. K. V. Desai, C. J. Kavanaugh, A. Calvo, and J. E. Green (2002). Chipping away at breast cancer: Insights from microarray studies of human and mouse mammary cancer. Endocr. Relat. Cancer 9:207–220.

    Google Scholar 

  15. C. J. Kavanaugh, K. V. Desai, A. Calvo, P. H. Brown, C. Couldrey, R. Lubet, and J. E. Green (2002). Pre-clinical applications of transgenic mouse mammary cancer models. Transgenic Res. 11:617–633.

    Google Scholar 

  16. D. L. Dexter, M. Diamond, J. Creveling, and S. F. Chen (1993). Chemotherapy of mammary carcinomas arising in ras transgenic mice. Invest. New Drugs 11:161–168.

    Google Scholar 

  17. J. N. Hutchinson and W. J. Muller (2000). Transgenic mouse models of human breast cancer. Oncogene 19:6130–6137.

    Google Scholar 

  18. K. V. Desai, N. Xiao, W. Wang, L. Gangi, J. Greene, J. I. Powell, R. Dickson, P. Furth, K. Hunter, R. Kucherlapati, R. Simon, E. T. Liu, and J. E. Green (2002). Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc. Natl. Acad. Sci. U.S.A. 99:6967–6972.

    Google Scholar 

  19. R. Clarke (1996). Animal models of breast cancer: Their diversity and role in biomedical research. Breast Cancer Res. Treat. 39:1–6.

    Google Scholar 

  20. D. L. Dankort and W. L. Muller (2000). Signal transduction in mammary tumorigenesis: A transgenic perspective. Oncogene 19:1038–1044.

    Google Scholar 

  21. L. Hennighausen (2000). Mouse models for breast cancer. Oncogene 19:966–967.

    Google Scholar 

  22. P. M. Siegel, W. R. Hardy, and W. J. Muller (2000). Mammary gland neoplasia: Insights from transgenic mouse models. Bioessays 22:554–563.

    Google Scholar 

  23. J. N. Hutchinson and W. J. Muller (2000). Transgenic mouse models of human breast cancer. Oncogene 19:6130–6137.

    Google Scholar 

  24. R. Lidereau, D. Mathieu-Mahul, C. Escot, C. Theillet, M. H. Champeme, S. Cole, M. Mauchauffe, I. Ali, J. Amione, and R. Callahan (1988). Genetic variability of proto-oncogenes for breast cancer risk and prognosis. Biochimie 70:951–959.

    Google Scholar 

  25. I. Bieche and R. Lidereau (1995). Genetic alterations in breast cancer. Genes Chromosomes Cancer 14:227–251.

    Google Scholar 

  26. M. Cuny, A. Kramar, F. Courjal, V. Johannsdottir, B. Iacopetta, H. Fontaine, J. Grenier, S. Culine, and C. Theillet (2000). Relating genotype and phenotype in breast cancer: An analysis of the prognostic significance of amplification at eight different genes or loci and of p53 mutations. Cancer Res. 60:1077–1083.

    Google Scholar 

  27. L. E. Janocko, K. A. Brown, C. A. Smith, L. P. Gu, A. A. Pollice, S. G. Singh, T. Julian, N. Wolmark, L. Sweeney, J. F. Silverman, and S. E. Shackney (2001) Distinctive patterns of Her-2/neu, c-myc, and cyclin D1 gene amplification by fluorescence in situ hybridization in primary human breast cancers. Cytometry 46:136–149.

    Google Scholar 

  28. R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development 115:49–58.

    Google Scholar 

  29. M. H. Jamerson, M. D. Johnson, and R. B. Dickson (2000). Dual regulation of proliferation and apoptosis: c-myc in bitransgenic murine mammary tumor models. Oncogene 19:1065–1071.

    Google Scholar 

  30. A. Leder, P. K. Pattengale, A. Kuo, T. A. Stewart, and P. Leder (1986). Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development. Cell 45:485–495.

    Google Scholar 

  31. C. A. Schoenenberger, A. C. Andres, B. Groner, V. van d, M. LeMeur, and P. Gerlinger (1988). Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumours with constitutive milk protein gene transcription. EMBO J. 7:169–175.

    Google Scholar 

  32. T. A. Stewart, P. K. Pattengale, and P. Leder (1984). Spontaneous mammary adenocarcinomas in transgenic mice that carry and express MTV/myc fusion genes. Cell 38:627–637.

    Google Scholar 

  33. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire (1987). Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182.

    Google Scholar 

  34. D. L. Slamon, W. Godolphin, L. A. Jones, J. A. Holt, S. G. Wong, D. E. Keith, W. J. Levin, S. G. Stuart, J. Udove, and A. Ullrich (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712.

    Google Scholar 

  35. W. C. Dougall and M. I. Greene (1994). Biological studies and potential therapeutic applications of monoclonal antibodies and small molecules reactive with the neu/c-erbB-2 protein. Cell Biophys 24–25:209–218.

    Google Scholar 

  36. C. T. Guy, R. D. Cardiff, and W. J. Muller (1996). Activated neu induces rapid tumor progression. J. Biol. Chem. 271:7673–7678.

    Google Scholar 

  37. W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 54:105–115.

    Google Scholar 

  38. R. D. Cardiff and W. J. Muller (1993). Transgenic mouse models of mammary tumorigenesis. Cancer Surv. 16:97–113.

    Google Scholar 

  39. R. Chan, W. J. Muller, and P. M. Siegel (1999). Oncogenic activating mutations in the neu/erbB-2 oncogene are involved in the induction of mammary tumors. Ann. N. Y. Acad. Sci. 889:45–51.

    Google Scholar 

  40. W. J. Muller (2003). General keynote: Expression of epidermal growth factor receptor family in transgenic mouse models of human breast cancer. Gynecol. Oncol. 88:S43-S46.

    Google Scholar 

  41. E. R. Andrechek, W. R. Hardy, P. M. Siegel, M. A. Rudnicki, R. D. Cardiff, and W. J. Muller (2000). Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 97:3444–3449.

    Google Scholar 

  42. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, R. D. Cardiff, and W. J. Muller (1992). Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. U.S.A. 89:10578–10582.

    Google Scholar 

  43. A. A. Adjei (2001). Blocking oncogenic Ras signaling for cancer therapy. J. Natl. Cancer. Inst. 93:1062–1074.

    Google Scholar 

  44. E. Sinn, W. Muller, P. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 49:465–475.

    Google Scholar 

  45. C. T. Guy, R. D. Cardiff, and W. J. Muller (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12:954–961.

    Google Scholar 

  46. E. S. Gershtein, V. A. Shatskaya, V. D. Ermilova, N. E. Kushlinsky, and M. A. Krasil'nikov (1999). Phospatidylinositol 3-kinase expression in human breast cancer. Clin. Chim. Acta. 287:59–67.

    Google Scholar 

  47. J. C. Keen and N. E. Davidson (2003). The biology of breast carcinoma. Cancer 97:825–833.

    Google Scholar 

  48. L. Zheng, S. Li, T. G. Boyer, and W. H. Lee (2000). Lessons learned from BRCA1 and BRCA2. Oncogene 19:6159–6175.

    Google Scholar 

  49. R. M. Elledge and D. C. Allred (1994). The p53 tumor suppressor gene in breast cancer. Breast Cancer Res. Treat. 32:39–47.

    Google Scholar 

  50. G. H. Sakorafas and A. G. Tsiotou (2000). Genetic predisposition to breast cancer: A surgical perspective. Br. J. Surg. 87:149–162.

    Google Scholar 

  51. D. Medina, F. S. Kittrell, A. Shepard, L. C. Stephens, C. Jiang, J. Lu, D. C. Allred, M. McCarthy, and R. L. Ullrich (2002). Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J. 16:881–883.

    Google Scholar 

  52. M. A. Shibata, C. L. Jorcyk, M. L. Liu, K. Yoshidome, L. G. Gold, and J. E. Green (1998). The C3(1)/SV40 T antigen transgenic mouse model of prostate and mammary cancer. Toxicol. Pathol. 26:177–182.

    Google Scholar 

  53. J. E. Green, M. A. Shibata, K. Yoshidome, M. L. Liu, C. Jorcyk, M. R. Anver, J. Wigginton, R. Wiltrout, E. Shibata, S. Kaczmarczyk, W. Wang, Z. Y. Liu, A. Calvo, and C. Couldrey (2000). The C3(1)/SV40 T-antigen transgenic mouse model of mammary cancer: Ductal epithelial cell targeting with multistage progression to carcinoma. Oncogene 19:1020–1027.

    Google Scholar 

  54. M. Li, B. Lewis, A. V. Capuco, R. Laucirica, and P. A. Furth (2000). WAP-TAg transgenic mice and the study of dysregulated cell survival, proliferation, and mutation during breast carcinogenesis. Oncogene 19:1010–1019.

    Google Scholar 

  55. R. D. Cardiff (2001). Validity of mouse mammary tumour models for human breast cancer: Comparative pathology. Microsc. Res. Tech. 52:224–230.

    Google Scholar 

  56. R. D. Cardiff, M. R. Anver, B. A. Gusterson, L. Hennighausen, R. A. Jensen, M. J. Merino, S. Rehm, J. Russo, F. A. Tavassoli, L. M. Wakefield, J. M. Ward, and J. E. Green (2000). The mammary pathology of genetically engineered mice: The consensus report and recommendations from the Annapolis meeting. Oncogene 19:968–988.

    Google Scholar 

  57. S. Drmanac and R. Drmanac (1994). Processing of cDNA and genomic kilobase-size clones for massive screening, mapping and sequencing by hybridization. Biotechniques 17:328–336.

    Google Scholar 

  58. M. Schena, D. Shalon, R. W. Davis, and P. O. Brown (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470.

    Google Scholar 

  59. M. B. Eisen and P. O. Brown (1999). DNA arrays for analysis of gene expression. Methods Enzymol. 303:179–205.

    Google Scholar 

  60. E. Manduchi, L. M. Scearce, J. E. Brestelli, G. R. Grant, K. H. Kaestner, and C. J. Stoeckert Jr. (2002). Comparison of different labeling methods for two-channel high-density microarray experiments. Physiol. Genomics 10:169–179.

    Google Scholar 

  61. S. P. Fodor, R. P. Rava, X. C. Huang, A. C. Pease, C. P. Holmes, and C. L. Adams (1993). Multiplexed biochemical assays with biological chips. Nature 364:555–556.

    Google Scholar 

  62. T. R. Hughes, M. Mao, A. R. Jones, J. Burchard, M. J. Marton, K. W. Shannon, S. M. Lefkowitz, M. Ziman, J. M. Schelter, M. R. Meyer, S. Kobayashi, C. Davis, H. Dai, Y. D. He, S. B. Stephaniants, G. Cavet, W. L. Walker, A. West, E. Coffey, D. D. Shoemaker, R. Stoughton, A. P. Blanchard, S. H. Friend, and P. S. Linsley (2001). Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat. Biotechnol. 19:342–347.

    Google Scholar 

  63. R. Ramakrishnan, D. Dorris, A. Lublinsky, A. Nguyen, M. Domanus, A. Prokhorova, L. Gieser, E. Touma, R. Lockner, M. Tata, X. Zhu, M. Patterson, R. Shippy, T. J. Sendera, and A. Mazumder (2002). An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. Nucleic Acids Res. 30:e30.

    Google Scholar 

  64. D. J. Lockhart and E. A. Winzeler (2000). Genomics, gene expression and DNA arrays. Nature 405:827–836.

    Google Scholar 

  65. R. Simon, M. D. Radmacher, and K. Dobbin (2002). Design of studies using DNA microarrays. Genet. Epidemiol. 23:21–36.

    Google Scholar 

  66. O. Alter, P. O. Brown, and D. Botstein (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proc. Natl. Acad. Sci. U.S.A. 97:10101–10106.

    Google Scholar 

  67. Y. Wang, J. Lu, R. Lee, Z. Gu, and R. Clarke (2002). Iterative normalization of cDNA microarray data. IEEE Trans. Inf. Technol. Biomed. 6:29–37.

    Google Scholar 

  68. O. Ermolaeva, M. Rastogi, K. D. Pruitt, G. D. Schuler, M. L. Bittner, Y. Chen, R. Simon, P. Meltzer, J. M. Trent, and M. S. Boguski (1998). Data management and analysis for gene expression arrays. Nat. Genet. 20:19–23.

    Google Scholar 

  69. S. Draghici, A. Kuklin, B. Hoff, and S. Shams (2001). Experimental design, analysis of variance and slide quality assessment in gene expression arrays. Curr. Opin. Drug. Discov. Dev. 4:332–337.

    Google Scholar 

  70. M. K. Kerr and G. A. Churchill (2001). Statistical design and the analysis of gene expression microarray data. Genet. Res. 77:123–128.

    Google Scholar 

  71. G. Sherlock (2000). Analysis of large-scale gene expression data. Curr. Opin. Immunol. 12:201–205.

    Google Scholar 

  72. J. Quackenbush (2001). Computational analysis of microarray data. Nat. Rev. Genet. 2:418–427.

    Google Scholar 

  73. S. A. Bustin (2000). Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 25:169–193.

    Google Scholar 

  74. J. Torhorst, C. Bucher, J. Kononen, P. Haas, M. Zuber, O. R. Kochli, F. Mross, H. Dieterich, H. Moch, M. Mihatsch, O. P. Kallioniemi, and G. Sauter (2001). Tissue microarrays for rapid linking of molecular changes to clinical endpoints. Am. J. Pathol. 159:2249–2256.

    Google Scholar 

  75. L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the MMTV/c-neu oncogene. Cell 57:931–936.

    Google Scholar 

  76. P. J. Tremblay, F. Pothier, T. Hoang, G. Tremblay, S. Brownstein, A. Liszauer, and D. P. Jolicoeur (1989). Transgenic mice carrying the mouse mammary tumor virus ras fusion gene: Distinct effects in various tissues. Mol. Cell. Biol. 9:854–859.

    Google Scholar 

  77. Y. J. Tzeng, E. Guhl, M. Graessmann, and A. Graessmann (1993). Breast cancer formation in transgenic animals induced by the whey acidic protein SV40 T antigen (WAP-SV-T) hybrid gene. Oncogene 8:1965–1971.

    Google Scholar 

  78. I. G. Maroulakou, M. Anver, L. Garrett, and J. E. Green (1994). Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene. Proc. Natl. Acad. Sci. U.S.A. 91:11236–11240.

    Google Scholar 

  79. M. Fluck, G. Zurcher, A. C. Andres, and A. Ziemiecki (1995). Molecular characterization of the murine syk protein tyrosine kinase cDNA, transcripts and protein. Biochem. Biophys. Res. Commun. 213:273–281.

    Google Scholar 

  80. P. J. Coopman, M. T. Do, M. Barth, E. T. Bowden, A. J. Hayes, E. Basyuk, J. K. Blancato, P. R. Vezza, S. W. McLeskey, P. H. Mangeat, and S. C. Mueller (2000). The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406:742–747.

    Google Scholar 

  81. T. Toyama, H. Iwase, H. Yamashita, Y. Hara, Y. Omoto, H. Sugiura, Z. Zhang, and Y. Fujii (2003). Reduced expression of the Syk gene is correlated with poor prognosis in human breast cancer. Cancer Lett. 189:97–102.

    Google Scholar 

  82. A. Rosner, K. Miyoshi, E. Landesman-Bollag, X. Xu, D. C. Seldin, A. R. Moser, C. L. MacLeod, G. Shyamala, A. E. Gillgrass, and R. D. Cardiff (2002). Pathway pathology: Histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am. J. Pathol. 161:1087–1097.

    Google Scholar 

  83. R. J. Lee, C. Albanese, M. Fu, M. D'Amico, B. Lin, G. Watanabe, G. K. Haines III, P. M. Siegel, M. C. Hung, Y. Yarden, J. M. Horowitz, W. J. Muller, and R. G. Pestell (2000). Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol. Cell. Biol. 20:672–683.

    Google Scholar 

  84. M. R. Emmert-Buck, R. F. Bonner, P. D. Smith, R. F. Chuaqui, Z. Zhuang, S. R. Goldstein, R. A. Weiss, and L. A. Liotta (1996). Laser capture microdissection. Science 274:998–1001.

    Google Scholar 

  85. M. A. Rubin (2001). Use of laser capture microdissection, cDNA microarrays, and tissue microarrays in advancing our understanding of prostate cancer. J. Pathol. 195:80–86.

    Google Scholar 

  86. R. F. Bonner, M. Emmert-Buck, K. Cole, T. Pohida, R. Chuaqui, S. Goldstein, and L. A. Liotta (1997). Laser capture microdissection: Molecular analysis of tissue. Science 278:1481,1483.

    Google Scholar 

  87. J. D. Wulfkuhle, K. C. McLean, C. P. Paweletz, D. C. Sgroi, B. J. Trock, P. S. Steeg, and E. F. Petricoin III (2001). New approaches to proteomic analysis of breast cancer. Proteomics 1:1205–1215.

    Google Scholar 

  88. S. Curran, J. A. McKay, H. L. McLeod, and G. I. Murray (2000). Laser capture microscopy. Mol. Pathol. 53:64–68.

    Google Scholar 

  89. L. Fink, W. Seeger, L. Ermert, J. Hanze, U. Stahl, F. Grimminger, W. Kummer, and R. M. Bohle (1998). Real-time quantitative RT-PCR after laser-assisted cell picking. Nat. Med. 4:1329–1333.

    Google Scholar 

  90. K. Schutze and G. Lahr (1998). Identification of expressed genes by laser-mediated manipulation of single cells. Nat. Biotechnol. 16:737–742.

    Google Scholar 

  91. S. Ramaswamy, K. N. Ross, E. S. Lander, and T. R. Golub (2003). A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33:49–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fargiano, A.A., Desai, K.V. & Green, J.E. Interrogating Mouse Mammary Cancer Models: Insights from Gene Expression Profiling. J Mammary Gland Biol Neoplasia 8, 321–334 (2003). https://doi.org/10.1023/B:JOMG.0000010032.05234.6f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMG.0000010032.05234.6f

Navigation