Skip to main content
Log in

The Nucleation of Superfluid Turbulence at Very Low Temperatures by Flow Through a Grid

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent experiments by Nichol et al. (cond-mat/0309245 v2) have been concerned with the dynamical behaviour of a grid oscillating in superfluid 4He at a very low temperature, where the normal fluid can be ignored. An interesting enhancement of the effective mass of the grid was observed above a first threshold velocity, without significant increase in damping. Only above a second larger threshold was there a large increase in damping, resulting, we presume, from the generation of turbulence. We show now how the increase in effective mass can be understood in terms of an adiabatic response of the remanent quantized vortices that are knoum to be present, usually, in superfluid helium. Only at the larger threshold is the adiabatic response replaced by a dissipative evolution into a turbulent tangle of vortex lines. We present a semi-quantitative analysis of the experimental results, which suggests strongly that the remanent vortices must take the form of a rather high density of vortex loops attached to the grid. But confirmation of our ideas must await the completion of further experiments and a programme of non-trivial computer simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G.K. Batchelor, The Theory of Homogeneous Turbulence, Cambridge University Press (1953).

  2. S.R. Stalp, L. Skrbek and R.J. Donnelly, Phys. Rev. Lett. 82, 4831(1999).

    Google Scholar 

  3. L. Skrbek, J.J. Niemela and R.J. Donnelly, Phys. Rev. Lett. 85, 2973(2000).

    Google Scholar 

  4. W.F. Vinen, Phys. Rev. B 61, 1410(2000).

    Google Scholar 

  5. R.J. Donnelly, Quantized Vortices in Helium II, Cambridge University Press (1991).

  6. W.F. Vinen and J.J. Niemela, J. Low Temp. Phys. 128, 167(2002).

    Google Scholar 

  7. S.I. Davis, P.C. Hendry and P.V.E. McClintock, Physica B 280, 43(2000).

    Google Scholar 

  8. W.F. Vinen, Liquid Helium: Proc. Int. School of Physics, Enrico Fermi, Course XXI, p. 336, Academic Press, New York (1963).

    Google Scholar 

  9. W.H. Zurek, Nature 317, 505(1985).

    Google Scholar 

  10. D.D. Awschalom and K.W. Schwarz, Phys. Rev. Lett. 52, 49(1984).

    Google Scholar 

  11. H.A. Nichol, L. Skrbek, P.C. Hendry and P.V.E. McClintock, cond-mat/0309245 v2.

  12. A.P. Finne, T. Araki, R. Blaauwgeers, V.B. Eltsov, N.B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota and G.E. Volovik, Nature 424, 1022(2003).

    Google Scholar 

  13. W.F. Vinen, M. Tsubota and A. Mitani, Phys. Rev. Lett. 91, 135301(2003).

    Google Scholar 

  14. H. Lamb, Hydrodynamics, 6th Edition, Cambridge University Press (1932).

  15. K.W. Schwarz, Phys. Rev. B 38, 2398(1988).

    Google Scholar 

  16. M. Tsubota, T. Araki and S.K. Nemirovskii, Phys. Rev. B 62, 11751(2000).

    Google Scholar 

  17. C.F. Barenghi and D.C. Samuels, Phys. Rev. Lett. 89, 155302(2002).

    Google Scholar 

  18. F.V. Kusmartsev, Phys. Rev. Lett. 76, 1880(1996).

    Google Scholar 

  19. K.W. Schwarz, Phys. Rev. B 31, 5782(1985).

    Google Scholar 

  20. K.W. Schwarz, Phys. Rev. Lett. 57, 1448(1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinen, W.F., Skrbek, L. & Nichol, H.A. The Nucleation of Superfluid Turbulence at Very Low Temperatures by Flow Through a Grid. Journal of Low Temperature Physics 135, 423–445 (2004). https://doi.org/10.1023/B:JOLT.0000029506.10288.43

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOLT.0000029506.10288.43

Navigation