Skip to main content
Log in

Deficient IFN-γ Expression in Umbilical Cord Blood (UCB) T Cells Can Be Rescued by IFN-γ-Mediated Increase in NFATc2 Expression

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Regulation of nuclear factor of activated T cells-c2 (NFATc2) gene expression is not clearly defined. We previously reported reduced NFATc2 protein expression in cord blood T lymphocytes. Here we show that NFATc2 expression in T cells is dependent in part on the presence of IFN-γ during primary stimulation, as blocking of IFN-γ blunted NFATc2 protein and mRNA upregulation. Conversely, addition of exogenous IFN-γ during stimulation resulted in increased expression of NFATc2 in cord blood T lymphocytes. This correlated with rescue of deficient IFN-γ expression by cord blood T cells. Rescue of IFN-γ expression in cord blood T cells was dependent on the presence of antigen-presenting cells, as addition of IFN-γ during stimulation of purified cord blood T cells did not result in an increase of IFN-γ expression, and depletion of monocytes ablated the rescue of IFN-γ expression. Our results point to impaired function in the antigen-presenting cell population of cord blood, playing a role in the hyporesponsiveness of T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurtzberg J, Laughlin M, Graham ML, Smith C, Olson JF, Halperin EC, Ciocci G, Carrier C, Stevens CE, Rubinstein P: Placental blood as a source of hematopoietic stem cells for transplantation into unrelated recipients. N Engl J Med 335:157–166, 1996

    Google Scholar 

  2. Rubinstein P, Carrier C, Scaradavou A, Kurtzberg J, Adamson J, Migliaccio AR, Berkowitz RL, Cabbad M, Dobrila NL, Taylor PE, Rosenfield RE, Stevens CE: Outcomes among 562 recipients of placental-blood transplants from unrelated donors. N Engl J Med 339:1565–1577, 1998

    Google Scholar 

  3. Rocha V, Wagner JJ, Sobocinski K, Klein J, Zhang M, Horowitz M, Gluckman E: Graft-versus-host disease in children who have received a cord blood or bone marrow transplant from an HLA-identical sibling. Eurocord and international bone marrow transplant registry working committee on alternative donor and stem cell sources. N Engl J Med 342:1846–1854, 2000

    Google Scholar 

  4. Laughlin MJ, Barker J, Bambach B, Koc ON, Rizzieri DA, Wagner JE, Gerson SL, Lazarus HM, Cairo M, Stevens CE, Rubinstein P, Kurtzberg J: Hematopoietic engraftment and survival in adult recipients of umbilical cord blood from unrelated donors. N Engl J Med 344:1815–1822, 2001

    Google Scholar 

  5. Chalmers IMH, Janossy G, Contreras M, Navarrete C: Intracellular cytokine profile of cord and adult blood lymphocytes. Blood 92:11–18, 1998

    Google Scholar 

  6. Kadereit S, Mohammad S, Miller R, Daum Woods K, Listrom C, McKinnon K, Alali A, Bos L, Iacobuci M, Sramkoski M,Jacobberger J, Laughlin M: Reduced NFAT1 protein expression in human umbillical cord blood T lymphocytes. Blood 94:3101–3107, 1999

    Google Scholar 

  7. Kadereit S, Kozik M, Junge G, Miller R, Slivka L, Bos L, Daum-Woods K, Sramkoski R, Jacobberger J, Laughlin M: Cyclosporin A effects during primary and secondary activation of human umbilical cord blood T lymphocytes. Exp Hematol 29:903–909, 2001

    Google Scholar 

  8. Ferrara JLM, Krenger W: Graft-versus-host disease: The influence of type 1 and type 2 T cell cytokines. Transfus Med Rev 12:1–17, 1998

    Google Scholar 

  9. Klingebiel T, Schlegel PG: GVHD: Overview on pathophysiology, incidence, clinical and biological features. Bone Marrow Transplant 21:S45-S49, 1998

    Google Scholar 

  10. Pan L, Delmonte JJ, Jalonen CK, Ferrara JL: Pretreatment of donor mice with granulocyte colony-stimulating factor polarizes donor T lymphocytes toward type-2 cytokine production and reduces severity of experimental graft-versus-host disease. Blood 86:4422–4429, 1995

    Google Scholar 

  11. Yang YG: The role of interleukin-12 and interferon-gamma in GVHD and GVL. Cytokines Cell Mol Ther 6:41–46, 2000

    Google Scholar 

  12. Rao A, Luo C, Hogan PG: Transcription factors of the NFAT family: Regulation and Function. Ann Rev Immunol 15:707–747, 1997

    Google Scholar 

  13. Campbell P, Pimm J, Ramassar V, Halloran P: Identification of a calcium-inducible, cyclosporine sensitive element in the IFN-gamma promoter that is a potential NFAT binding site. Transplantation 61:933–939, 1996

    Google Scholar 

  14. Feske S, Muller JM, Graf D, Kroczek RA, Drager R, Niemeyer C, Baeuerle PA, Peter HH, Schlesier M: Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur J Immunol 26:2119–2126, 1996

    Google Scholar 

  15. Sica A, Dorman L, Viggiano V, Cippitelli M, Ghosh P, Rice N, Young HA: Interaction of NF-kappaB and NFAT with the interferon-gamma promoter. J Biol Chem 272:30412–30420, 1997

    Google Scholar 

  16. Sweetser M, Hoey T, Sun Y, Weaver W, Price G, Wilson C: The roles of nuclear factor of activated T cells and Ying-Yang 1 in activation-induced expression of the interferon-γ promoter in T cells J Biol Chem 273:34775–34783, 1998

    Google Scholar 

  17. Kiani A, Roa A, Aramburu J: Manipulating immune responses with immunosppressive agents that target NFAT. Immunity 12:359–372, 2000

    Google Scholar 

  18. Hodge MR, Ranger AM, de la Brousse FC, Hoey T, Grusby MJ, Glimcher LH: Hyperproliferation and dysregulation of IL-4 expression in NF-ATp-deficient mice. Immunity 4:397–405, 1996

    Google Scholar 

  19. Kiani A, Garcia-Cozar FJ, IH, Laforsch S, Aebischer T, Ehninger G, Rao A: Regulation of interferon-gamma gene expression by nuclear factor of activated T cells. Blood 98:1480–1488, 2001

    Google Scholar 

  20. McCaffrey PG, Luo C, Kerppola TK, Jain J, Badalian TM, Ho AM, Burgeon E, Lane WS, Lambert JN, Curran T, Verdine GL, Rao A, Hogan PG: Isolation of the cyclosporin-sensitive T cell transcription factor NFATp. Science 262:750–754, 1993

    Google Scholar 

  21. Lyakh L, Ghosh P, Rice NR: Expression of NFAT-family proteins in normal human T cells. Mol Cell Biol 17:2475–2484, 1997

    Google Scholar 

  22. Crabtree G, Olson E: NFAT signaling: Choreographing the social lives of cells. Cell 109:S67-S79, 2002

    Google Scholar 

  23. Northrop JP, Ho SN, Chen L, Thomas DJ, Timmerman LA, Nolan GP, Admon A, Crabtree GR: NF-AT components define a family of transcription factors targeted in T-cell activation. Nature 369:497–502, 1994

    Google Scholar 

  24. Diehl S, Chow C, Weiss L, Palmetshofer A, Twardzik T, Rounds L, Serfling E, Davis R, Anguita J, Rincon M: Induction of NFATc2 expression by interleukin 6 promotes T helper type 2 differentiation. J Exp Med 196:39–49, 2002

    Google Scholar 

  25. Cron R, Bort S, Wang Y, Brunvand M, Lewis D: T cell priming enhances IL-4 gene expression by increasing nuclear factor of activated T cells. J Immunol 162:860–870, 1999

    Google Scholar 

  26. Miller RE, Fayen JD, Mohammad SF, Stein K, Kadereit S, Daum Woods K, Sramkoski RM, Jacobberger JW, Templeton D, Shurin SB, Laughlin MJ: Reduced CTLA-4 protein and messenger RNA expression in umbilical cord blood T lymphocytes. Exp Hematol 30:738–744, 2002

    Google Scholar 

  27. Helms T, Boehm BO, Asaad RJ, Trezza RP, Lehmann PV, Tary-Lehmann M: Direct visualization of cytokine-producing recall antigen-specific CD4 memory T cells in healthy individuals and HIV patients. J Immunol 164:3723–3732, 2000

    Google Scholar 

  28. Cleveland WS: Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836, 1979

    Google Scholar 

  29. Verbeke G, Molenberghs G, (eds): Linear Mixed Models in Practice: A SAS-Oriented Approach. New York, Springer, 1997

    Google Scholar 

  30. Quesniaux V: Immunosuppressants: Tools to investigate the physiological role of cytokines. Bioessays 15:731–739, 1993

    Google Scholar 

  31. Forsthuber T, Yip HC, Lehmann PV: Induction of TH1 and TH2 immunity in neonatal mice. Science 271:1728–1730, 1996

    Google Scholar 

  32. Ridge JP, Fuchs EJ, Matzinger P: Neonatal tolerance revisited: Turning on newborn T cells with dendritic cells. Science 271:1723–1726, 1996

    Google Scholar 

  33. Krampera M, Tavecchia L, Benedetti F, Nadali G, Pizzolo G: Intracellular cytokine profile of cord blood T-, and NK-cells and monocytes. Haematologica 85:675–679, 2000

    Google Scholar 

  34. Liu E, Tu W, HKL, Lau YL: Changes of CD14 and CD1a expression in response to IL-4 and granulocyte-macrophage colony-stimulating factor are different in cord blood and adult blood monocytes. Pediatr Res 50:184–189, 2001

    Google Scholar 

  35. Varis I, Deneys V, Mazzon A, De Bruyere M, Cornu G, Brichard B: Expression of HLA-DR, CAM and costimulatory molecules on cord blood monocytes. Eur J Haematol 66:107–114, 2001

    Google Scholar 

  36. Sato K, Nagayama H, Takahashi TA: Aberrant CD3-and CD28-mediated signaling events in cord blood T cells are associated with dysfunctional regulation of Fas ligand-mediated cytotoxicity. J Immunol 162:4464–4471, 1999

    Google Scholar 

  37. Dinter A, Berger EG: Golgi-disturbing agents. Histochem Cell Biol 109:571–590, 1998

    Google Scholar 

  38. Gallucci S, Matzinger P: Danger signals: SOS to the immune system. Curr Opin Immunol 13:114–119, 2001

    Google Scholar 

  39. Matzinger P: An innate sense of danger. Semin Immunol 10:399–415, 1998

    Google Scholar 

  40. Ohteki T, Fukao T, Suzue K, Maki C, Ito M, Nakamura M,Koyasu S: Interleukin 12-dependent interferon gamma production by CD8alpha+ lymphoid dendritic cells. J Exp Med 189:1981–1986, 1999

    Google Scholar 

  41. Hochrein H, Shortman K, Vremec D, Scott B, Hertzog P, O'Keeffe M: Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 166:5448–5455, 2001

    Google Scholar 

  42. Puddu P, Fantuzzi L, Borghi P, Varano B, Rainaldi G, Guillemard E, Malorni W, Nicaise P, Wolf SF, Belardelli F, Gessani S: IL-12 induces IFN-gamma expression and secretion in mouse peritoneal macrophages. J Immunol 159:3490–3497, 1997

    Google Scholar 

  43. Chensue SW, Ruth JH, Warmington K, Lincoln P, Kunkel SL: In vivo regulation of macrophage IL-12 production during type 1 and type 2 cytokine-mediated granuloma formation. J Immunol 155:3546–3551, 1995

    Google Scholar 

  44. O'Garra A: Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8:275–283, 1998

    Google Scholar 

  45. Lee SM, Suen Y, Chang LVB, Qian J, Indes J, Knoppel E, van de Ven C, Cairo MS: Decreased interleukin-12 (IL-12) from activated cord versus adult peripheral blood mononuclear cells and upregulation of interferon-gamma, natural killer, and lymphokine-activated killer activity by IL-12 in cord blood mononuclear cells. Blood 88:945–954, 1996

    Google Scholar 

  46. Hamza NS, Lisgaris MV, Yadavalli GK, Fu P, Lazarus HM, Koc ON, Salata RA, Laughlin MJ: Infectious complications after unrelated HLA-mismatched allogeneic umbilical cord blood transplantation (UCBT) in adults. Blood 98 204a, 2001

    Google Scholar 

  47. Dorman SE, Holland SM: Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev 11:321–333, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Kadereit.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadereit, S., Junge, G.R., Kleen, T. et al. Deficient IFN-γ Expression in Umbilical Cord Blood (UCB) T Cells Can Be Rescued by IFN-γ-Mediated Increase in NFATc2 Expression. J Clin Immunol 23, 485–497 (2003). https://doi.org/10.1023/B:JOCI.0000010425.30967.0f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCI.0000010425.30967.0f

Navigation