Skip to main content
Log in

A Generalized Structure-Activity Relationship for the Decomposition of (Substituted) Alkoxy Radicals

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

A novel and readily applicable Structure-Activity Relationship (SAR) for predicting the barrier height Eb to decomposition by β C-C scission of (substituted) alkoxy radicals is presented. Alkoxy radicals are pivotal intermediates in the atmospheric oxidation of (biogenic) volatile organic compounds, and their fate is therefore of crucial importance to the understanding of atmospheric VOC degradation mechanisms. The SAR is based on available theoretical energy barriers and validated against barriers derived from experimental data. The SAR is expressed solely in terms of the number(s) Ni of alkyl-, hydroxy- and/or oxo-substituents on the α- and β-carbons of the breaking bond: Eb(kcal/mol) =17.5 − 2.1 × Nα(alk) − 3.1 ×Nβ(alk) − 8.0 × Nα,β(OH) − 8.0 × Nβ(O=) − 12 × Nα(O=). For barriers below 7 kcal/mol, an additional, second-order term accounts for the curvature. The SAR reproduces the available experimental and theoretical data within 0.5 to 1 kcal/mol. The SAR generally allows conclusive predictions as to the fate of alkoxy radicals; several examples concerning oxy radicals from prominent atmospheric VOC are presented. Specific limitations of the SAR are also discussed. Using the predicted barrier height Eb, the high-pressure rate coefficient for alkoxy decomposition k diss (298 K) can be obtained from k diss (298 K) = L ×1.8 × 1013 exp(−Eb/RT) s−1, with L the reaction path degeneracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, R., 1997a: Atmospheric reactions of alkoxy and β-alkoxy radicals, Int. J. Chem. Kinet. 29, 99–111.

    Article  Google Scholar 

  • Atkinson, R., 1997b: Gas-phase tropospheric chemistry of volatile organic compounds. 1. Alkanes and alkenes, J. Phys. Chem. Ref. Data. 26, 215–290.

    Google Scholar 

  • Atkinson, R., Kwok, E. S. C., Arey, J., and Aschmann, S. M., 1995: Reactions of alkoxyl radicals in the atmosphere, Faraday Discuss. 100, 23–37.

    Article  Google Scholar 

  • Baldwin, A. C., Barker, J. R., Golden, D. M., and Hendry, D. G., 1977: Photochemical smog — rate parameter estimates and computer simulations, J. Phys. Chem. 81, 2483–2492.

    Article  Google Scholar 

  • Blitz, M., Pilling, M. J., Robertson, S. H., and Seakins, P. W., 1999: Direct studies on the decomposition of the tert-butoxy radical and its reaction with NO, Phys. Chem. Chem. Phys. 1, 73–80.

    Article  Google Scholar 

  • Caralp, F., Devolder, P., Fittschen, Ch., Gomez, N., Hippler, H., Méreau, R., Rayez, M. T., Striebel, F., and Viskolcz, B., 1999: The thermal unimolecular decomposition rate constants of ethoxy radicals, Phys. Chem. Chem. Phys. 1, 2935–2944.

    Article  Google Scholar 

  • Carter, W. P. L., Lloyd, A. C., Sprung, J. L., and Pitts, J. N., 1979: Computer modelling of smog chamber data — progress in validation of a detailed mechanism for the photo-oxidation of propene and n-butane in photochemical smog, Int. J. Chem. Kinet. 11, 45–101.

    Article  Google Scholar 

  • Choo, K. Y. and Benson, S. W., 1981: Arrhenius parameters for the alkoxy radical decomposition reactions, Int. J. Chem. Kinet. 13, 833–844.

    Article  Google Scholar 

  • Cox, R. A., Patrick, K. F., and Chant, S. A., 1981: Mechanism of atmospheric phot-oxidation of organic compounds — reactions of alkoxy radicals in oxidation of n-butane and simple ketones, Env. Sci. Technol. 15, 587–592.

    Article  Google Scholar 

  • Curran, H. J., Gaffuri, P., Pitz, W. J., and Westbrook, C. K., 1998: A comprehensive modeling study of n-heptane oxidation, Combust. Flame 114, 149–177.

    Article  Google Scholar 

  • Dagaut, P., Luche, J., and Cathonnet, M., 2001: The low temperature oxidation of DME and mutual sensitization of the oxidation of DME and nitric oxide: Experimental and detailed kinetic modeling, Combust. Sci. Technol. 165, 61–84.

    Google Scholar 

  • Deng, W., Davis, A. J., Zhang, L., Katz, D. R., and Dibble, T. S., 2001: Direct kinetic studies of the reactions of 3-pentoxy radicals with NO and O2, J. Phys. Chem. A 105, 8985–8990.

    Article  Google Scholar 

  • Deng, W., Wang, C., Katz, D. R., Gawinski, G. R., Davis, A. J., and Dibble, T. S., 2000: Direct kinetic studies of the reactions of 2-butoxy radicals with NO and O2, Chem. Phys. Lett. 330, 541–546.

    Article  Google Scholar 

  • Devolder, P., Fittschen, Ch., Frenzel, A., Hippler, H., Poskrebyshev, G., Striebel, F., and Viskolcz, B., 1999: Complete falloff curves for the unimolecular decomposition of i-propoxy radicals between 330 and 408 K, Phys. Chem. Chem. Phys. 1, 675–681.

    Article  Google Scholar 

  • Dibble, T. S., 2001: Reactions of the alkoxy radicals formed following OH-addition to alpha-pinene and beta-pinene. C-C bond scission reactions, J. Am. Chem. Soc. 123, 4228–4234.

    Article  PubMed  Google Scholar 

  • Dobé, S., Berces, T., and Marta, F., 1986: Gas-phase decomposition and isomerization reactions of 2-pentoxy radicals, Int. J. Chem. Kinet. 18, 329–344.

    Article  Google Scholar 

  • Evans, M. G. and Polanyi, M., 1935: Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans. Faraday Soc. 31, 875–894.

    Article  Google Scholar 

  • Fantechi, G., Vereecken, L., and Peeters, J., 2002: The OH-initiated atmospheric oxidation of pinon-aldehyde: Detailed theoretical study and mechanism construction, Phys. Chem. Chem. Phys. 4, 5795–5805.

    Article  Google Scholar 

  • Fenske, J. D., Hasson, A. S., Paulson, S. E., Kuwata, K. T., Ho, A., and Houk, K. N., 2000: The pressure dependence of the OH radical yield from ozone-alkene reactions, J. Phys. Chem. A 104, 7821–7833.

    Article  Google Scholar 

  • Ferenac, M. A., Davis, A. J., Holloway, A. S., and Dibble, T. S., 2003: Isomerization and decomposition reactions of primary alkoxy radicals derived from oxygenated solvents, J. Phys. Chem. A 107, 63–72.

    Article  Google Scholar 

  • Fittschen, C., Hippler, H., and Viskolcz, B., 2000: The β C-C bond scission in alkoxy radicals: thermal unimolecular decomposition of t-butoxy radicals, Phys. Chem. Chem. Phys. 2, 1677–1683.

    Article  Google Scholar 

  • Hein, H., Hoffmann, A., and Zellner, R., 1998: Direct investigations of reactions of 2-butoxy radicals using laser pulse initiated oxidation: Reaction with O2 and unimolecular decomposition at 293 K and 50 mbar, Ber. Bunsenges. Phys. Chem. — Phys. Chem. Chem. Phys. 102, 1840–1849.

    Google Scholar 

  • Hein, H., Somnitz, H., Hoffmann, A., and Zellner, R., 2000: A combined experimental and theoretical investigation of the reactions of 3-pentoxy radicals: Reaction with O2 and unimolecular decomposition, Z. Phys. Chem. — Int. J. Res. Phys. Chem. Chem. Phys. 214, 449–471.

    Google Scholar 

  • Ho, W. F., Gilbert, B. C., and Davies, M. J., 1997: EPR spin-trapping studies of radicals generated from the Fe-II-catalysed degradation of nucleobase, nucleoside, RNA and DNA hydroperoxides, J. Chem. Soc. Perkin Trans. 2, 2525–2531.

    Google Scholar 

  • Jungkamp, T. P. W., Smith, J. N., and Seinfeld, J. H., 1997: Atmospheric oxidation mechanism of n-butane: The fate of alkoxy radicals, J. Phys. Chem. A 101, 4392–4401.

    Article  Google Scholar 

  • Karas, A. J., Gilbert, R. G., and Collins, M. A., 1992: Rigorous derivation of reaction path degeneracy in transition state theory, Chem. Phys. Lett. 193, 181–184.

    Article  Google Scholar 

  • Libuda, H. G., Shestakov, O., Theloke, J., and Zabel, F., 2002: Relative-rate study of thermal decomposition of the 2-butoxyl radical in the temperature range 280–313 K, Phys. Chem. Chem. Phys. 4, 2579–2586.

    Article  Google Scholar 

  • Lightfoot, P. D., Roussel, P., Veyret, B., and Lesclaux, R., 1990: Flash-photolysis study of the spectra and self-reactions of neopentylperoxy and tert-butylperoxy radicals, J. Chem. Soc. Faraday. T. 86, 2927–2936.

    Article  Google Scholar 

  • Masgrau, L., Gonzales-Lafont, A., and Lluch, J. M., 2002: Variational transition-state theory rate constant calculations with multidimensional tunneling corrections of the reaction of acetone with OH, J. Phys. Chem. A 106, 11760–11770.

    Article  Google Scholar 

  • Méreau, R., 2000: Contribution théorique à la mise en évidence de relations "structure-réactivité' dans les radicaux d'intérêt atmosphérique, PhD Thesis, L' Université de Bordeaux I, 2000.

  • Méreau, R., Rayez, M.-T., Caralp, F., and Rayez, J.-C., 2000: Theoretical study of alkoxyl radical decomposition reactions: Structure-activity relationships, Phys. Chem. Chem. Phys. 2, 3765–3772.

    Article  Google Scholar 

  • Méreau, R., Rayez, M.-T., Rayez, J.-C., and Hiberty, P. C., 2001: Alkoxyl radical decomposition explained by a valence-bond model, Phys. Chem. Chem. Phys. 3, 3656–3661.

    Article  Google Scholar 

  • Orlando, J. J., Tyndall, G. S., Bilde, M., Ferronato, C., Wallington, T. J., Vereecken, L., and Peeters, J., 1998: Laboratory and theoretical study of the oxy radicals in the OH-and Cl-initiated oxidation of ethene, J. Phys. Chem. A 102, 8116–8123.

    Article  Google Scholar 

  • Orlando, J. J., Tyndall, G. S., Vereecken, L., and Peeters, J., 2000: The atmospheric chemistry of the acetonoxy radical, J. Phys. Chem. A 104, 11578–11588.

    Article  Google Scholar 

  • Peeters, J., Vereecken, L., and Fantechi, G., 2001: The detailed mechanism of the OH-initiated atmospheric oxidation of α-pinene: A theoretical study, Phys. Chem. Chem. Phys. 3, 5489–5504.

    Article  Google Scholar 

  • Pilling, M. J., 1997: Low-Temperature Combustion and Autoignition, Elsevier, New York.

    Google Scholar 

  • Shestakov, O., Libuda, H. G., and Zabel, F., 1999: The atmospheric fate of 3-pentoxy radicals, Proceedings of the EC/Eurotrac-2 Joint Workshop Aachen, Germany, pp. 97–100.

  • Somnitz, H. and Zellner, R., 2000a: Theoretical studies of unimolecular reactions of C-2-C-5 alkoxy radicals. Part I. Ab initio molecular orbital calculations, Phys. Chem. Chem. Phys. 2, 1899–1905.

    Article  Google Scholar 

  • Somnitz, H. and Zellner, R., 2000b: Theoretical studies of unimolecular reactions of C-2-C-5 alkoxy radicals. Part II. RRKM dynamical calculations, Phys. Chem. Chem. Phys. 2, 1907–1918.

    Article  Google Scholar 

  • Somnitz, H. and Zellner, R., 2000c: Theoretical studies of unimolecular reactions of C-2-C-5 alkoxyl radicals. Part III. A microscopic structure activity relationship (SAR), Phys. Chem. Chem. Phys. 2, 4319–4325.

    Article  Google Scholar 

  • Vandenberk, S., Vereecken, L., and Peeters, J., 2002: The acetic acid forming channel in the acetone plus OH reaction: A combined experimental and theoretical investigation, Phys. Chem. Chem. Phys. 4, 461–466.

    Article  Google Scholar 

  • Vereecken, L., Peeters, J., Orlando, J. J., Tyndall, G. S., and Ferronato, C., 1999: Decomposition of beta-hydroxypropoxy radicals in the OH-initiated oxidation of propene. A theoretical and experimental study, J. Phys. Chem. A 103, 4693–4702.

    Article  Google Scholar 

  • Vereecken, L. and Peeters, J., 1999: Theoretical investigation of the role of intramolecular hydrogen bonding in beta-hydroxyethoxy and beta-hydroxyethylperoxy radicals in the tropospheric oxidation of ethene, J. Phys. Chem. A 103, 1768–1775.

    Article  Google Scholar 

  • Vereecken, L. and Peeters, J., 2000: Theoretical study of the formation of acetone in the OH-initiated atmospheric oxidation of α-pinene, J. Phys. Chem. A 104, 11140–11146.

    Article  Google Scholar 

  • Vereecken, L. and Peeters, J., 2002: Enhanced H-atom abstraction from pinonaldehyde, pinonic acid, pinic acid, and related compounds: Theoretical study of C-H bond strengths, Phys. Chem. Chem. Phys. 4, 467–472.

    Article  Google Scholar 

  • Warneck, P., 1988: Chemistry of the Natural Atmosphere, International Geophysics Series, Vol. 41, Academic Press Inc., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peeters, J., Fantechi, G. & Vereecken, L. A Generalized Structure-Activity Relationship for the Decomposition of (Substituted) Alkoxy Radicals. Journal of Atmospheric Chemistry 48, 59–80 (2004). https://doi.org/10.1023/B:JOCH.0000034510.07694.ce

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCH.0000034510.07694.ce

Navigation