Skip to main content
Log in

Control of the particle size and morphology of hydrothermally synthesised lead zirconate titanate powders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The particle size and morphology of hydrothermally synthesised lead zirconate titanate (PZT) powders can be controlled by concentrations of the mineraliser such as potassium hydroxide (KOH), and the hydrothermal synthesis temperature and time, which all influence the particle nucleation and growth mechanisms. The mineraliser is crucial in facilitating both the in-situ transformation process during the nucleation stage and the nuclei-coagulation process during the subsequent growth stage. Its concentration must be high enough to ensure the formation of only pure perovskite PZT particles but low enough to prevent excessive PZT particle growth. The minimum necessary mineraliser concentration has, however, strong dependence on both the hydrothermal synthesis temperature and chemical environment in hydrothermal solution. Thus, perovskite PZT powders with ca. 200 nm particle size and narrow particle size distribution can be synthesised hydrothermally at 300°C using KOH as a mineraliser with a minimum concentration of 0.4 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. LANGE, J. Amer. Ceram. Soc. 72 (1989) 9.

    Google Scholar 

  2. W. J. DAWSON, Amer. Ceram. Soc. Bull. 67 (1988) 1673.

    Google Scholar 

  3. R. E. RIMAN, in"High-performance Ceramics," edited by R. Pugh and L. Bergstrom (Marcel-Dekker, New York, 1993) p. 29.

    Google Scholar 

  4. T. R. N. KUTTY and R. BALACHANDRAN, Mater. Res. Bull. 19 (1984) 1479.

    Google Scholar 

  5. T. ICHIHARA, T. TSURUMI, K. ASAGA, K. H. LEE and M. DAIMON, J. Ceram. Soc. Jpn. Intel. Ed. 98 (1990) 155.

    Google Scholar 

  6. H. CHENG, J. MA, B. ZHU and Y. Cui, J. Amer. Ceram. Soc. 76 (1993) 625.

    Google Scholar 

  7. M. M. LENCKA, A. ANDERKO and R. E. RIMAN, ibid. 78 (1995) 2609.

    Google Scholar 

  8. M. TRAIANIDIS, C. COURTIS and A. LERICHE, J. Euro. Ceram. Soc. 20 (2000) 2713.

    Google Scholar 

  9. E. SOVACI, A. DOGAN, J. ANDERSON and J. H. ADAIR, Chem. Eng. Comm. 190 (2003) 843.

    Google Scholar 

  10. K. C. BEAL,"Advances in Ceramics, Ceramic Powder Science" (The American Ceramic Society Inc., 1987) Vol. 21, p. 33.

    Google Scholar 

  11. S. B. CHO, M. OLEDZKA and R. E. RIMAN, J. Cryst. Growth 226 (2001) 313.

    Google Scholar 

  12. Y. OHBA, T. RIKITOKU, T. TSURUMI and M. DAIMON, J. Ceram. Soc. Jpn. 104 (1996) 6.

    Google Scholar 

  13. B. SU, T. W. BUTTON and C. B. PONTON, Rev. High Press. Sci. Tech. 7 (1998) 1348.

    Google Scholar 

  14. C. F. BAES JR. and R. E. MESMER, "The Hydrolysis of Cations" (Krieger Publishing Company, Florida, 1986) p. 147.

    Google Scholar 

  15. G. D. SMITH, C. N. CAUGHLAN and J. A. CAMPBELL, Inorg. Chem. 11 (1972) 2989.

    Google Scholar 

  16. D. HENNINGS, G. ROSENSTEIN and H. SCHREINEMACHER, J. Euro. Ceram. Soc. 8 (1991) 107.

    Google Scholar 

  17. D. V. LUEBKE,US Patent, 3,442,817 (1969).

  18. E. J. MARGOLIS, "Chemical Principles in Calculations of Ionic Equilibria" (Macmillan, New York, 1966).

    Google Scholar 

  19. J. E. FERGUSSON, "The Heavy Elements: Chemistry, Environmental Impact and Health Effects" (Pergamon, Oxford, 1990).

    Google Scholar 

  20. S. S. SENGUPTA, L. MA, D. L. ADLER and D. A. PAYNE, J. Mater. Res. 10 (1995) 1345.

    Google Scholar 

  21. I. LAAZIZ, A. LARBOT, A. JULBE, C. GUIZARD and L. COT, J. Solid State Chem. 98 (1992) 393.

    Google Scholar 

  22. P. BARBOUX, P. GRIESMAR, F. RIBOT and L. MAZEROLLES, ibid. 117 (1995) 343.

    Google Scholar 

  23. R. J. HUNTER, "Zeta Potential in Colloidal Science: Principle and Applications" (Academic Press Ltd., London, 1981) p. 22.

    Google Scholar 

  24. J. N. ISRAELACHVILI, "Intermolecular and Surface Forces" (Academic Press Ltd., London, 1992) p. 248

    Google Scholar 

  25. A. C. PIERRE, Amer. Ceram. Soc. Bull. 70 (1991) 1281.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, B., Button, T.W. & Ponton, C.B. Control of the particle size and morphology of hydrothermally synthesised lead zirconate titanate powders. Journal of Materials Science 39, 6439–6447 (2004). https://doi.org/10.1023/B:JMSC.0000044881.35754.ea

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSC.0000044881.35754.ea

Keywords

Navigation