Skip to main content
Log in

Thermal Diffusivity Measurements of Thermographite

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper presents results of measurements of a graphite proposed to serve as a thermophysical property reference or standard reference material. The reported measurements contribute to a program launched in 1999 by Anter Corp. with the objective to provide a replacement for the NIST thermal property reference material RM AXM-5Q graphite whose supplies were being exhausted. Measurements of the thermal diffusivity performed on five specimens taken from different positions within a large graphite block between room temperature and 1300 K were in good mutual agreement. Measurements of NIST reference AXM-5Q graphite sample supplied to minimize effects of different contributors to a common base were also in good agreement, both with the NBS reference function established by Hust in 1984 and contributions to the NBS project from the Vinčca Institute of Nuclear Sciences carried out in 1979. The influence of different data reduction techniques on the measured thermal diffusivity values is illustrated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. S. Gaal, Private communication (Anter Corp., Pittsburgh, Pennsylvania, August, 1999).

  2. J. G. Hust, Nat. Bur. Stand. (U.S.) Spec. Publ. 260-289 (1984).

  3. K. D. Maglić, N. Lj. Perović, and Z. P. Životić, High Temp.–High Press. 11:555(1980).

    Google Scholar 

  4. P. S. Gaal, Private communication (Anter Corp., Pittsburgh, Pennsylvania, November, 2002).

  5. K. D. Maglić and R. E. Taylor, in Compendium of Thermophysical Property Measurement Methods 2, K. D. Maglić, A. Cezairliyan, and V. E. Peletsky, eds. (Plenum, New York, 1992), pp. 281-314.

    Google Scholar 

  6. J. G. Hust and A. B. Lankford, Nat. Bur. Stand. (U.S.) Rep. Investigat. RMs 8424, 8425, and 8426 Graphite (1984).

  7. L. M. Clark III and R. E. Taylor, J. Appl. Phys. 46:714(1975).

    Google Scholar 

  8. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbot, J. Appl. Phys. 32:1679(1961).

    Google Scholar 

  9. R. C. Heckman, in Thermal Conductivity 14, P. G. Klemens and T. K. Chu, eds. (Plenum, New York, 1974), pp. 491-498.

    Google Scholar 

  10. N. D. Milošević, M. Raynaud, M. Laurent, and K. D. Maglić, Thermal Science 1–2:71(1999).

    Google Scholar 

  11. J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Sciences (Wiley, New York, 1977), pp. 340-351.

    Google Scholar 

  12. D. A. Watt, Br. J. Appl. Phys. 17:231(1966).

    Google Scholar 

  13. T. Yamane, S. Katayama, and M. Todoki, Int. J. Thermophys. 18:269(1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Maglić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maglić, K.D., Milošević, N.D. Thermal Diffusivity Measurements of Thermographite. International Journal of Thermophysics 25, 237–247 (2004). https://doi.org/10.1023/B:IJOT.0000022337.88761.a4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000022337.88761.a4

Navigation