Skip to main content
Log in

Amplified Fragment Length Polymorphism (AFLP) Reveals Species-Specific Markers in the Daphnia Galeata–HyalinaSpecies Complex

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Daphnia often occur in species complexes that consist of two or more co-occurring species and their hybrids. Hybrid individuals are often capable of sexual reproduction and so backcrossing with introgression occurs. To better understand hybridization and backcrossing frequency, we sought to develop PCR-based, species-specific markers in the Daphnia galeata–hyalina species complex using amplified fragment length polymorphism (AFLP). This technique produces large numbers of reproducible markers for assessing diversity across the nuclear genome and provides several advantages over mtDNA and microsatellite approaches. We examined 28 clones of D. galeata, D. hyalina, and their hybrids isolated from Lake Constance on the Swiss-German border. Using a single AFLP primer combination we found five potential species-specific markers, defined as bands that occurred in >80% of one parental species and <20% of the other. Two bands appeared to be co-dominant and were present (homozygous) in D. galeata, absent in D. hyalina, and heterozygous in the hybrid. We conclude AFLP could provide enough PCR-based, species-specific markers to identify species, hybrids, and backcrosses from even small amounts of tissue (i.e. resting eggs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beismann, H., J. H. A. Barker, A. Karp & T. Speck, 1997. AFLP analysis sheds light on distribution of two Salix species and their hybrid along a natural gradient. Molecular Ecology 6: 989-993.

    Google Scholar 

  • Bensch, S., A. J. Helbig, M. Salomon & I. Siebold, 2002. Amplified fragment length polymorphism analysis identifies hybrids between two subspecies of warblers. Molecular Ecology 11: 473-481.

    PubMed  Google Scholar 

  • Boecklen, W. J. & D. J. Howard, 1997. Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78: 2611-2616.

    Google Scholar 

  • Castiglioni, P., P. Ajmone-Marsan, R. van Wijk & M. Motto, 1999. AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theoretical and Applied Genetics 99: 425-431.

    Google Scholar 

  • Colbourne, J. K. & P. D. N. Hebert, 1996. The systematics of North-American Daphnia (crustacea, anomopoda)–a molecular phylogenetic approach. Philosophical Transactions of the Royal Society London Series B-Biological Sciences 351: 349-360.

    Google Scholar 

  • Duffy, M. A., L. J. Perry, C. M. Kearns, L. J. Weider & N. G. Hairston, 2000. Paleogenetic evidence for a past invasion of Onondaga Lake, New York, by exotic Daphnia curvirostris using mtDNA from dormant eggs. Limnology and Oceanography 45: 1409-1414.

    Google Scholar 

  • Ender, A., K. Schwenk, T. Stadler, B. Streit & B. Schierwater, 1996. Rapd identification of microsatellites in Daphnia. Molecular Ecology 5: 437-441.

    PubMed  Google Scholar 

  • Flößner, D., 1993. Zur Kenntnis einiger Daphnia-Hybriden. Limnologica 23: 71-79.

    Google Scholar 

  • Gießler, S., 1997. Analysis of reticulate relationships within the Daphnia longispina species complex. Allozyme phenotype and morphology. Journal of Evolutionary Biology 10: 87-105.

    Google Scholar 

  • Gießler, S., 2001. Morphological difierentiation within the Daphnia longispina group. Hydrobiologia 442: 55-66.

    Google Scholar 

  • Gießler, S., E. Mader & K. Schwenk, 1999. Morphological evolution and genetic difierentiation in Daphnia species complexes. Journal of Evolutionary Biology 12: 710-723.

    Google Scholar 

  • Jankowski, T., 2002. From diapause to sexual reproduction: evolutionary ecology of the Daphnia hybrid complex from Lake Constance. Ph.D. Thesis, Universität Konstanz, Konstanz, 106 pp.

    Google Scholar 

  • Jansen, R. C., H. Geerlings, A. J. Van Oeveren & R. C. Van Schaik, 2001. A comment on codominant scoring of AFLP markers. Genetics 158: 925-926.

    PubMed  Google Scholar 

  • Leydig, F., 1860. Naturgeschichte der Daphniden <Crustacea cladocera>. Laupp, Tübingen, 252 pp.

    Google Scholar 

  • Limburg, P. A. & L. J. Weider, 2002. 'Ancient' DNA in the resting egg bank of a microcrustacean can serve as a palaeolimnological database. Proceedings of the Royal Society London Series B-Biological Science 269: 281-287.

    Google Scholar 

  • Ogden, R. & R. S. Thorpe, 2002. The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Molecular Ecology 11: 437-445.

    PubMed  Google Scholar 

  • O'Hanlon, P. C., R. Peakall & D. T. Briese, 1999. Amplified fragment length polymorphism (AFLP) reveals introgression in weedy Onopordum thistles: hybridization and invasion. Molecular Ecology 8: 1239-1246.

    PubMed  Google Scholar 

  • Pfrender, M. E., K. Spitze & N. Lehman, 2000. Multi-locus genetic evidence for rapid ecologically based speciation in Daphnia. Molecular Ecology 9: 1717-1735.

    PubMed  Google Scholar 

  • Piepho, H. P. & G. Koch, 2000. Codominant analysis of banding data from a dominant marker system by normal mixtures. Genetics 155: 1459-1468.

    PubMed  Google Scholar 

  • Schwenk, K., 1993. Interspecific hybridization in Daphnia: distinction and origin of hybrid matrilines. Molecular Biology and Evolution 10: 1289-1302.

    PubMed  Google Scholar 

  • Schwenk, K., 1997. Evolutionary genetics of Daphnia species complexes — hybridism in syntopy. Ph.D. Thesis, University of Utrecht, Utrecht, 141 pp.

    Google Scholar 

  • Schwenk, K., D. Posada & P. D. N. Hebert, 2000. Molecular systematics of European Hyalodaphnia: the role of contemporary hybridization in ancient species. Proceedings of the Royal Society London Series B-Biological Science 267: 1833-1842.

    Google Scholar 

  • Schwenk, K., A. Sand, M. Boersma, M. Brehm, E. Mader, D. Offerhaus & P. Spaak, 1998. Genetic markers, genealogies and biogeographic patterns in the cladocera. Aquatic Ecology 32: 37-51.

    Google Scholar 

  • Schwenk, K. & P. Spaak, 1995. Evolutionary and ecological consequences of interspecific hybridization in cladocerans. Experientia 51: 465-481.

    Google Scholar 

  • Sneath, P. H. A. & R. R. Sokal, 1973. Numerical taxonomy the principles and practice of numerical classification. Freeman, San Francisco, XV, 573 pp.

    Google Scholar 

  • Spaak, P., 1996. Temporal changes in the genetic structure of the Daphnia species complex in Tjeukemeer, with evidence for backcrossing. Heredity 76: 539-548.

    Google Scholar 

  • Spaak, P., A. Denk, M. Boersma & L. J. Weider, 2004. Spatial and temporal patterns of sexual reproduction in a hybrid Daphnia species complex. Journal of Plankton Research, in press.

  • StatSoft, I., 2001. STATISTICA (data analysis software system), version 6. www.statsoft.com.

  • Sunnucks, P. & D. F. Hales, 1996. Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13: 510-524.

    PubMed  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. Van De Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23: 4407-4414.

    PubMed  Google Scholar 

  • Vos, P. & M. Kuiper, 1997. AFLP Analysis. In Caetano-Annoles, G. & P. M. Gressho. (eds), DNA Markers: Protocols, Applications, and Overviews, Wiley-VCH, New York: 115-131.

    Google Scholar 

  • Wolf, H. G., 1987. Interspeci.c hybridization between Daphnia hyalina, D. galeata and D. cucullata and seasonal abundance of these species and their hybrids. Hydrobiologia 145: 213-217.

    Google Scholar 

  • Wolf, H. G. & M. A. Mort, 1986. Interspecific hybridization underlies phenotypic variability in Daphnia populations. Oecologia 68: 507-511.

    Google Scholar 

  • Wong, A., M. R. Forbes & M. L. Smith, 2001. Characterization of AFLP markers in damselfiies: prevalence of codominant markers and implications for population genetic applications. Genome 44: 677-684.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gili, M., Monaghan, M.T. & Spaak, P. Amplified Fragment Length Polymorphism (AFLP) Reveals Species-Specific Markers in the Daphnia Galeata–HyalinaSpecies Complex. Hydrobiologia 526, 63–71 (2004). https://doi.org/10.1023/B:HYDR.0000041613.30678.56

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000041613.30678.56

Navigation