Skip to main content
Log in

Phylogeography of a facultatively migratory dragonfly, Libellula quadrimaculata (Odonata: Anisoptera)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The biogeography of a widely distributed dragonfly (Libellula quadrimaculata) was examined via a phylogenetic analysis of 416 bp of the mitochondrial cytochrome oxidase I subunit (COI). Phylogenetic analyses under parsimony and minimum evolution produced trees with similar topologies, and revealed strong support for three clades corresponding to populations in Asia, Europe and North America. However, resolution was poor within clades, and genetic distances between populations within continents was quite low (1–2%). Several populations of this species are known to engage in periodic mass migrations, and it is possible that introgression from gene flow due to the mobility of this species has obscured phylogenetic patterns within continents. I was unable to test for phylogenetic patterns coincident with historical glacial refugia given the lack of phylogenetic patterns within continents. However, given that some sequence divergence was observed between populations within continents, it is possible that phylogenetic patterns exist, and subsequent studies should make use of larger data sets, and molecular data from faster evolving genes. Despite the propensity for periodic, short distance migrations in L. quadrimaculata, gene flow appears to be limited and does not influence the phylogenetic relationships of populations between continents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Artiss, T., T. R. Schultz, D. A. Polhemus, and C. Simon, 2001. Molecular phylogenetic analysis of the dragonfly genera Libellula, Ladona, and Plathemis (Odonata: Libellulidae) based on mitochondrial cytochrome oxidase I and 16S rRNA sequence data. Molecular Phylogenetics and Evolution 18: 348–361.

    PubMed  Google Scholar 

  • Aukema, B., 1995. The evolutionary significance of wing dimorphism in carabid beetles (Coleoptera: Carabidae). Researches on Population Ecology (Kyoto) 37: 105–110.

    Google Scholar 

  • Bremer, K., 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803.

    Google Scholar 

  • Bremer, K., 1994. Branch support and tree stability. Cladistics 10: 295–304.

    Article  Google Scholar 

  • Butlin, R. K., C. Walton, K. A. Monk & J. R. Bridle, 1998. Biogeography of Sulawesi grasshoppers, genus Chitaura, using DNA sequence data. In R. Hall and J. D. Holloway (eds), Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, The Netherlands: 355–359.

    Google Scholar 

  • Burton, J. F., 1996. Movements of the dragonfly Libellula quadrimaculata Linnæus, 1758 in northwest Europe in 1963. Atalanta 27: 175–187.

    Google Scholar 

  • Chapco, W., R. A. Kelln, & D. A. McFayden, 1992. Intraspecific mitochondrial DNA variation in the migratory grasshopper, Melanoplus sanguinipes. Heredity 69: 547–557.

    Google Scholar 

  • Carpenter, J. M., 1988. Choosing among equally parsimonious cladograms. Cladistics 4: 291–296.

    Google Scholar 

  • Chippindale, P. T., D. H. Whitmore, V. K. Davé, T. G. Valencia & J. V. Robinson, 1998. Effective procedures for the extraction, amplification and sequencing of Odonate DNA. Odonatologica 27: 415–424.

    Google Scholar 

  • Corbet, P. S., 1999. Dragonflies: Behavior and Ecology of Odonata. Cornell University Press, Itchica: 383–426.

    Google Scholar 

  • Crandall, K. A. & J. F. Fitzpatrick, Jr., 1996. Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology 45: 1–26.

    Google Scholar 

  • Crozier, R. H., and Y. C. Crozier, 1993. The mitochondrial genome of the honeybee Apis mellifera: complete sequence and genome organization. Genetics 133: 97–117.

    PubMed  Google Scholar 

  • Dingle, H., 1985. Migration and life histories. In Rankin, M. A. (ed.), Migration: Mechanisms and Adaptive Significance. Contributions to Marine Science 27 (Suppl). Marine Science Institute, University of Texas: 27–42.

  • Donoghue, M. J., R. G. Olmstead, J. F. Smith, & J. D. Palmer, 1992. Phylogenetic relationships of Dipscales based on rbcL sequences. Annals of the Missouri Botanical Garden 79: 333–345.

    Google Scholar 

  • Dumont, H. J. & B. O. N. Hinnekint, 1973. Mass migration in dragonflies, especially in Libellula quadrimaculata L.: a review, new ecological approach and a new hypothesis. Odonatologica 2: 1–20.

    Google Scholar 

  • Eriksson, T., 1998. AutoDecay. Version 4.01. (Program distributed by the author.) Department of Botany, Stockholm University, Stockholm.

    Google Scholar 

  • Estoup, A., M. Solignac, J.-M. Cornuet, J. Goudet, & A. Scholl, 1996. Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Molecular Ecology 5: 19–31.

    PubMed  Google Scholar 

  • Fairbairn, D. J., 1994. Wing dimorphism and the migratory syndrome: correlated traits for migratory tendency in wing dimorphic insects. Researches on Population Ecology (Kyoto) 36: 157–163.

    Google Scholar 

  • Fairbairn, D. J. & D. A. Roff, 1990. Genetic correlations among traits determining migratory tendency in the sand cricket, Gryllus firmus. Evolution 44: 1787–1795.

    Google Scholar 

  • Farris, J. S., 1969. A successive approximations approach to character weighting. Systematic Zoology 18: 374–385.

    Google Scholar 

  • Felsenstein, J., 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution 17: 368–376.

    PubMed  Google Scholar 

  • Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.

    Google Scholar 

  • Fleischer, R. C., C. E. McIntosh & C. L. Tarr, 1998. Evolution on a volcanic conveyer belt: using phylogeographic reconstructions and K-Ar-based ages of the Hawaiian Islands to estimate molecular evolutionary rates. Molecular Ecology 7: 533–545.

    PubMed  Google Scholar 

  • Frati, F., C. Simon, J. Sullivan & D. L. Swofford, 1997. Evolution of the mitochondrial cytochrome oxidase II gene in Collembola. Journal of Molecular Evolution 44: 145–158.

    PubMed  Google Scholar 

  • Hasegawa, M., H. Kishino & T.-A. Yano, 1985. Dating of the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160–174.

    PubMed  Google Scholar 

  • Hewitt, G. M., 1999. Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society 68: 87–112.

    Google Scholar 

  • Holder, K., R. Montgomerie & V. L. Freisen, 1999. A test of the glacial refugium hypothesis using patterns of mitochondrial and nuclear DNA sequence variation in rock ptarmigan (Lagopus mutus). Evolution 53: 1936–1950.

    Google Scholar 

  • Kennedy, C. H., 1922a. The morphology of the penis in the genus Libellula (Odonata). Entomological News 33: 33–40.

    Google Scholar 

  • Kennedy, C. H., 1922b. The phylogeny and the geographical distribution of the genus Libellula (Odonata). Entomological News 33: 65–71.

    Google Scholar 

  • Jukes, T. H. & C. R. Cantor, 1969. Evolution of protein molecules. In Munro, H. N. (ed.), Mammalian Protein Metabolism. Academic Press, New York.

    Google Scholar 

  • Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.

    PubMed  Google Scholar 

  • Kimura, M., 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, USA 78: 454–458.

    Google Scholar 

  • Lunt, D. H., D.-X. Zhang, J. M. Szymura & G. M. Hewitt, 1996. The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology 5: 153–165.

    PubMed  Google Scholar 

  • Lunt, D. H., K. M. Ibrahim & G. M. Hewitt, 1998. mtDNA phylogeography and postglacial patterns of subdivision in the meadow grasshopper Chorthippus parallelus. Heredity 80: 633–641.

    PubMed  Google Scholar 

  • MacHugh, D. E., M. D. Shriver, R. T. Loftus, P. Cunningham & D. G. Bradley, 1997. Microsatellite DNA variation and the evolution, domestication and phylogeography of Taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 146: 1071–1086.

    PubMed  Google Scholar 

  • Maddison, D. R., 1991. The discovery and importance of multiple islands of most parsimonious trees. Systematic Zoology 40: 315–328.

    Google Scholar 

  • Mueller, U. G., S. A. Rehner & T. R. Schultz, 1998. The evolution of agriculture in ants. Science 281: 2034–2038.

    PubMed  Google Scholar 

  • Needham, J. G. & M. J. Westfall, 1955. The Dragonflies of North America: Libellula. University of California Press, Berkeley.

    Google Scholar 

  • Orange, D. I., B. R. Riddle & D. C. Nickle, 1999. Phylogeography of a wide-ranging desert lizard, Gambelia wislizenii (Crotaphytidae). Copeia 99: 267–273.

    Google Scholar 

  • Phillips, A. J. & C. Simon, 1995. Simple, efficient, and nondestructive DNA extraction protocol for arthropods. Annals of the Entomological Society of America 88: 281–283.

    Google Scholar 

  • Polhemus, D. A. & J. T. Polhemus, 1998. Assembling New Guinea: 40 million years of island arc accretion as indicated by the distributions of aquatic Heteroptera (Insecta). In Hall, R. & J. D. Holloway (eds), Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, Leiden: 1–23.

    Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. Modeltest: testing models of DNA substitution. Bioinformatics 14: 817–818.

    Article  PubMed  Google Scholar 

  • Roderick, G. K. & R. G. Gillespie, 1998. Speciation and phylogeography of Hawaiian terrestrial arthropods. Molecular Ecology 7: 519–531.

    PubMed  Google Scholar 

  • Rodríguez, F. J., J. L. Oliver, A. Marín & J. R. Medina, 1990. The general stochastic model of nucleotide substitution. Journal of Theoretical Biology 142: 485–501.

    PubMed  Google Scholar 

  • Russell, R. W., M. L. May, K. L. Soltesz & J. W. Fitzpatrick, 1998. Massive swarm migrations of dragonflies (Odonata) in eastern North America. American Midland Naturalist 140: 325–342.

    Google Scholar 

  • Saitou, N. & M. Nei, 1987. The neighbor-joining method: A new method for reconstructing trees. Molecular Biology and Evolution 4: 406–425.

    PubMed  Google Scholar 

  • Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu & P. Flook, 1994. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651–701.

    Google Scholar 

  • Slade, R. W. & C. Moritz, 1998. Phylogeography of Bufo marinus from its natural and introduced ranges. Proceedings of the Royal Society of London Series B-Biological Sciences: 769-777.

  • Steppan, S. J., M. R. Akhverdyan, E. A. Lyapunova, D. G. Fraser, N. N. Vorontsov, R. S. Hoffmann & M. J. Braun, 1999. Molecular phylogeny of the marmots (Rodentia: Sciuridae): tests of evolutionary and biogeographic hypotheses. Systematic Biology 48: 715–734.

    PubMed  Google Scholar 

  • Sternberg, K., 1998. The postglacial colonization of Central Europe by dragonflies, with special reference to southwestern Germany (Insecta, Odonata). Journal of Biogeography 25: 319–337.

    Google Scholar 

  • Sullivan, J., J. A. Markert & C. W. Kilpatrick, 1997. Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. Systematic Biology 46: 426–440.

    PubMed  Google Scholar 

  • Swofford, D. L., 1999. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Taberlet, P., 1998. Biodiversity at the intraspecific level: the comparative phylogeographic approach. Journal of Biotechnology 64: 91–100.

    Google Scholar 

  • Taberlet, P., L. Fumagalli, A.-G. Wust-Saucy & J.-F. Cosson, 1998. Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology 7: 453–464.

    PubMed  Google Scholar 

  • Tamura, K. & M. Nei, 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10: 512–526.

    PubMed  Google Scholar 

  • Thompson, J. D., D. G. Higgins & T. J. Gibson, 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680.

    PubMed  Google Scholar 

  • Vogler, A. P. & R. DeSalle, 1993. Phylogeographic patterns in coastal North American tiger beetles (Cicindela dorsalis Say) inferred from mitochondrial DNA sequences. Evolution 47: 1192–1202.

    Google Scholar 

  • Waits, L. P., S. L. Talbot, R. H. Ward & G. F. Shields, 1998. Mitochondrial DNA phylogeography of the North American brown bear and implications for conservation. Conservation Biology 12: 408–417.

    Google Scholar 

  • Walker, E. M. & P. S. Corbet, 1975. The Odonata of Canada and Alaska, Vol. 3. University of Toronto Press, Toronto.

    Google Scholar 

  • Wenink, P. W., A. J. Baker, H.-U. Rösner & M. G. J. Tilanus, 1996. Global mitochondrial DNA phylogeography of holarctic breeding dunlins (Calidris alpina). Evolution 50: 318–320.

    Google Scholar 

  • Yang, Z., N. Goldman & A. Friday, 1994. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Molecular Biology and Evolution 11: 316–324.

    PubMed  Google Scholar 

  • Zharkikh, A., 1994. Estimation of evolutionary distances between nucleotide sequences. Journal of Molecular Evolution 9: 315–329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Artiss, T. Phylogeography of a facultatively migratory dragonfly, Libellula quadrimaculata (Odonata: Anisoptera). Hydrobiologia 515, 225–234 (2004). https://doi.org/10.1023/B:HYDR.0000027332.57786.9d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000027332.57786.9d

Navigation