Skip to main content
Log in

Response of potato grown under non-inductive condition paclobutrazol: shoot growth, chlorophyll content, net photosynthesis, assimilate partitioning, tuber yield, quality, and dormancy

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

The effect of foliar and soil applied paclobutrazol on potato were examined under non-inductive condition in a greenhouse. Single stemmed plants of the cultivar BP1 were grown at 35(±2)/20(±2) °C day/night temperatures, relative humidity of 58%, and a 16 h photoperiod. Twenty-eight days after transplanting paclobutrazol was applied as a foliar spray or soil drench at rates of 0, 45.0, 67.5, and 90.0 mg active ingredient paclobutrazol per plant. Regardless of the method of application paclobutrazol increased chlorophyll a and b contents of the leaf tissue, delayed physiological maturity, and increased tuber fresh mass, dry matter content, specific gravity, dormancy period of the tubers. Paclobutrazol reduced the number of tubers per plant. A significant interaction between rates and methods of paclobutrazol application were observed with respect to plant height and tuber crude protein content. Foliar application gave a higher rate of net photosynthesis than the soil drench. Paclobutrazol significantly reduced total leaf area and increased assimilate partitioning to the tubers. The study clearly showed that paclobutrazol is effective to suppress excessive vegetative growth, favor assimilation to the tubers, increase tuber yield, improve tuber quality and extend tuber dormancy of potato grown in high temperatures and long photoperiods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdella G., Guinazu M., Tizio R., Pearce D.W.and Pharis R.P.1995.Effect of 2-chloroethyl trimethyl ammonium chlorides on tuberization and endogenous GA3 in roots of potato cuttings.Plant Growth Regul.17:95 100.

    Google Scholar 

  • Amador V., Bou J., Martinez-Garcia J., Monte E., Rodriguez-Falcon M.,Russo E.and Prat S.2001.Regulation of potato tuberization by day length and gibberellins.Int.J.Dev.Biol. 45(S1):S37–S38.

    Google Scholar 

  • AOAC.1984.O.cial Methods of Analysis.Association of O.cial Analytical Chemists,14th ed.,Washington DC, USA.

  • Appeldoorn N.J.G., de Bruijn S.M., Koot-Gronsveld E.A.M., Visser R.G.F., Vreugdenhil D.and der Plas L.H.W.1997. Developmental changes of enzymes involved in sucrose to hexose-phosphate conversion during early tuberization of potato.Planta 202:220–226.

    Google Scholar 

  • Balamani V.and Poovaiah B.W.1985.Retardation of shoot growth and promotion of tuber growth of potato plants by paclobutrazol.Am.Potato J.62:363–369.

    Google Scholar 

  • Bandara P.M.S.and Tanino K.K.1995.Paclobutrazol enhances mini tuber production in Norland potatoes.J.Plant Growth Regul.14:151–155.

    Google Scholar 

  • Belakbir A.1998.Yield and fruit quality of pepper (Capsicum annum L)in response to bioregulators.HortScience 33(1): 85–87.

    Google Scholar 

  • Ben Khedher M.and Ewing E.E.1985.Growth analysis of eleven potato cultivar grown in the greenhouse under long photoperiods with and without heat stress.Am.Potato J.62: 537–554.

    Google Scholar 

  • Binns A.N.1994.Cytokinin accumulation and action:biochemical,genetic,and molecular approaches.Ann.Rev. Plant Physiol.45:173–196.

    Google Scholar 

  • Bodlaender K.B.A.and Algra S.1966.In.uence of growth retardant B995 on growth and yield of potatoes.Eur.Potato J.9:242–258.

    Google Scholar 

  • Booth A.and Lovell P.H.1972.The Effect of pre-treatment with gibberellic acid on the distribution of photosynthates in intact and disbudded plants of Solanum tuberosum.New Phytol.71:795–804.

    Google Scholar 

  • Davis T.D.and Curry E.A.1991.Chemical regulation of vegetative growth.Crit.Rev.Plant Sci.10:151–188.

    Google Scholar 

  • Dogonadze M.Z., Korableva N.P., Platonova T.A.and Shaposhnikov G.L.2000.Effects of gibberellin and auxin on the synthesis of abscisic acid and ethylene in buds of dormant and sprouting potato tuber.Prikladnaia Biokhimiia I Mikrobiologia 36(5):588–591.

    Google Scholar 

  • Dwelle R.B., Kleinkof G.E.and Pavek J.J.1981.Stomatal conductance and gross photosynthesis of potato (Solanum tuberosum L.)as in.uence by irradiance,temperature and growth stage.Potato Res.24:49–59.

    Google Scholar 

  • Ewing E.E.1981.Heat stress and tuberization stimulus.Am. Potato J.58:31–49.

    Google Scholar 

  • Fletcher R.A., Kallidumbil V.and Steele P.1982.An improved bioassay for cytokinin using cucumber cotyledons.Plant Physiol.69:675–677.

    Google Scholar 

  • Geiger D.R.1976.Effects of translocation and assimilate demand on photosynthesis.Can.J.Bot.54:2337–2345.

    Google Scholar 

  • Gregory L.E.1965.Physiology of tuberization in plants.(Tubers and tuberous root).Handbuch P.anzenphysiol,pp. 1328–1354.

  • Grossmann K.1992.Plant growth retardants:Their mode of action and bene t for physiological research.In:Karssen C.M., Van Loon L.C.and Vreugdenhil D.(eds),Plant Growth Regulations.Kluwer Academic Publishers, The Netherlands,pp.788–797.

    Google Scholar 

  • Hall A.J.and Milthorpe F.L.1978.Assimilate source-sink relationships in capsicum annum L.III.The Effects of fruit excision on the photosynthesis,and leaf and stem carbohydrates.Aust.J.Plant Physiol.5:1–13.

    Google Scholar 

  • Harvey B.M.R., Crothers S.H., Evans N.E.and Selby C.1991. The use of growth retardants to improve micro tuber formation of potato (Solanum tuberosum L.).Plant Cell Tissue Organ Cult.27:59–64.

    Google Scholar 

  • Haughan P.A., Burden R.S., Lenton J.R.and Goad L.J.1989. Inhibition of celery cell growth and sterol biosynthesise by the enantiomers of paclobutrazol.Phytochemistry 28(3): 781–787.

    Google Scholar 

  • Hemberg T.1970.The action of some cytokinin on the rest period and control of acidic growth inhibiting substances in potato.Physiol.Plant.23:850–858.

    Google Scholar 

  • Izumi K., Nakagawa S., Kobayashi M., Oshio H., Sakurai A. and Takahashi N.1988.Levels of IAA,cytokinins,ABA and ethylene in rice plants as a.ected by GA biosynthesis inhibitor,uniconazole-P.Plant Cell Physiol.29:97–104.

    Google Scholar 

  • Jackson S.D.1999.Multiple signalling pathways control tuber induction in potato.Plant Physiol.119:1–8.

    Google Scholar 

  • Jackson S.D.and Prat S.1996.Control of tuberization in potato by gibberellins and phytochrome B.Physiol.Plant.98: 407–412.

    Google Scholar 

  • Kamoutsis A.P., Chronopoulou-Sereli A.G.and Paspatis E.A. 1999.Paclobutrazol a.ects growth andflower bud production in Gardenia under different light regimes.HortScience 34(4):674–675.

    Google Scholar 

  • Khalil I.A.1995.Chlorophyll and carotenoid contents in cereals as a.ected by growth retardants of triazole series. Cereal Res.Commun.23:183–189.

    Google Scholar 

  • Krauss A.1978.Tuberization and abscisic acid content o in Solanum tuberosum as affected by nitrogen nutrition.Potato Res.21:183–193.

    Google Scholar 

  • Kumar D.and Wareing P.F.1972.Factor controlling stolon development in potato plant.New Phytol.71:639–648.

    Google Scholar 

  • Langille A.R.and Helper P.R.1992.Effects of three anti-gibberellin growth retardants on tuberization of induced and non-induced katahdants potato leaf bud cuttings.Am.Potato J.60:131–141.

    Google Scholar 

  • Leach J.E., Parkinson K.J.and Woodhead T.1982.Photosynthesis,respiration and evaporation of a eld grown potato crop.Ann.Appl.Biol.101:377–390.

    Google Scholar 

  • Levy D.1992.Potato in hot climates-could we do more?In: Proceeding of Advanced Potato Production in the Hot Climates Symposium,24-28 May 1992,Nahal-OZ,Israel, pp.3–7.

  • MacKinney G.1941.Absorption of light by chlorophyll solutions.J.Biol.Chem.140:315–322.

    Google Scholar 

  • Manrique L.A.1989.Analysis of growth of the Kennebec potatoes grown under differing environments in the tropics. Am.Potato J.66:277–291.

    Google Scholar 

  • Mares D.J., Marschner H.and Krauss A.1981.Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato (Solanum tuberosum L.).Physiol. Plant.52:267–274.

    Google Scholar 

  • Menzel C.M.1980.Tuberization in potato (Solanum tuberosum cultivar Sebago)at high temperature:response to gibberellin and growth inhibitors.Ann.Bot.46:259–266.

    Google Scholar 

  • Menzel C.M.1981.Tuberization in potato at higher temperatures:promotion by disbudding.Ann.Bot.47:727–733.

    Google Scholar 

  • Moorby J.1968.The in.uence of carbohydrates and mineral nutrient supply on growth of potato plants.Ann.Bot.32:57 68.

    Google Scholar 

  • Morpurgo R.and Ortiz R.1988.Morphological variation in potato (Solanum spp.)under contrasting environments. Environ.Exp.Bot.28:165–169.

    Google Scholar 

  • MSTAT-C.1991.A Microcomputer Program for Design Management and Analysis of Agronomic Research Experiments.Michigan State University,East Lansing,MI,USA.

  • Nosberger J.and Humphries E.C.1965.The in.uence of removing tubers on dry matter production and net assimilation rate of potato plants.Ann.Bot.29:579–588.

    Google Scholar 

  • Paiva E., Lister R.M.and Park W.D.1983.Induction and accumulation of major tuber proteins of potato in stems and petioles.Plant Physiol.71:161–168.

    Google Scholar 

  • Park W.D.1990.Molecular approaches to tuberization in potato.In:Vayda M.E.and Park W.D.(eds),The Molecular and Cellular Biology of the Potato.Redwood Press Ltd, Malkashim, UK,pp.261–278.

    Google Scholar 

  • Peet M.M.and Kramer P.J.1980.Effects of decreasing source/ sink ratio in soybeans on photosynthesis,photorespiration, transpiration and yield.Plant Cell Environ.3:201–206.

    Google Scholar 

  • Rademacher W.1997.Bioregulation of crop plants with inhibitors of gibberellin biosynthesis.Proc.Plant Growth Regul.Soc.Am.24:27–31.

    Google Scholar 

  • Railton I.D.and Wareing P.F.1973.Effects of day length on endogenous gibberellins in Solanum andigena.I.Changes in acidic gibberellin-like substances.Physiol.Plant.28:88–94.

    Google Scholar 

  • Sankhla N., Davis T.D., Upadhyaya A., Sankhla D., Walser R.H.and Smith B.N.1985.Growth and metabolism of soybean as a.ected by paclobutrazol.Plant Cell Physiol. 26(5):913–921.

    Google Scholar 

  • Sebastian B., Alberto G., Emilio A.C., Jose A.F.and Juan A.F. 2002.Growth,development and color response of potted Dianthus caryophyllus cv.Mondriaan to paclobutrazol treatment.Sci.Hort.1767:1–7.

    Google Scholar 

  • Simko I.1991.In vitro potato tuberization after treatment with paclobutrazol.Biologia 46:251–256.

    Google Scholar 

  • Simko I.1994.Effects of paclobutrazol on in vitro formation of potato micro-tubers and their sprouting after storage.Biol. Plant.36(1):15–20.

    Google Scholar 

  • Struik P.C., Geertsema J.and Custers C.H.M.G.1989.Effects of shoot,root and stolon temperature on the development of potato (Solanum tuberosum L.)plant.Development of tubers. Potato Res.32:151–158.

    Google Scholar 

  • Terri W.S.and Millie S.W.2000.Growth retardants a.ect growth andflowering of Scaevola.HortScience 35(1):36 38.

    Google Scholar 

  • Thornton M.K., Malik N.J.and Dwelle R.B.1996.Relationship between leaf gas exchange characteristics and productivity of potato clones grown at different temperatures.Am. Potato J.73:63–77.

    Google Scholar 

  • Tsegaw T.and Zelleke A.2002.Removal of reproductive growth increased yield and quality of potato (Solanum tuberosum L.).Trop.Agric.79(2):125–128.

    Google Scholar 

  • Van den Berg J.H., Simko I., Davies P.J., Ewing E.E.and Halinska A.1995.Morphology and ( 14 C)gibberellin A12 aldehyde metabolism in wild type and dwarf Solanum tuberosum spp.Andigena grown under long and short photoperiods.J.Plant Physiol.146:467–473.

    Google Scholar 

  • Van Gelder W.M.J.1981.Conversion factor from nitrogen to protein for potato tuber protein.Potato Res.24:423–425.

    Google Scholar 

  • Vandam J., Kooman P.L.and Struik P.C.1996.Effects of temperature and photoperiod on early growth and nal number of tubers in potato (Solanum tuberosum L.).Potato Res.39:51–62.

    Google Scholar 

  • Visser R.G.F., Vreugdenhil D., Hendrix T.and Jacobsen E. 1994.Gene expression and carbohydrate content during stolon to tuber transition in potatoes (Solanum tuberosum L.). Physiol Plant.90:285–292.

    Google Scholar 

  • Vreugdenhil D.and Sergeeva L.I.1999.Gibberellins and tuberization in potato.Potato Res.42:471–481.

    Google Scholar 

  • Vreugdenhil D.and Struik P.C.1989.An integrated view of hormonal regulation of tuber formation in potato (Solanum tuberosum L).Physiol.Plant.75:525–531.

    Google Scholar 

  • Wolf S., Marani A.and Rudich J.1990.Effects of temperature and photoperiod on assimilate partitioning in potato plant. Ann.Bot.66:515–520.

    Google Scholar 

  • Xu X., Vreugdenhil D.and Van Lammeren A.A.M.1998.Cell division and cell enlargement during potato tuber formation. J.Exp.Bot.49:573–582.

    Google Scholar 

  • Zhou W.and Xi H.1993.Effects of mixatalol and paclobutrazol on photosynthesis and yield of rape (Brassica napus).J.Plant Growth Regul.12:157–161.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tekalign, T., Hammes, P. Response of potato grown under non-inductive condition paclobutrazol: shoot growth, chlorophyll content, net photosynthesis, assimilate partitioning, tuber yield, quality, and dormancy. Plant Growth Regulation 43, 227–236 (2004). https://doi.org/10.1023/B:GROW.0000045992.98746.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GROW.0000045992.98746.8d

Navigation