Skip to main content
Log in

Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Breeding efforts to improve grain yield, seed protein concentration and early maturity in pea (Pisum sativum L.) have proven to be difficult. The use of molecular markers will improve our understanding of the genetic factors conditioning these traits and is expected to assist in selection of superior genotypes. This study was conducted to identify genetic loci associated with grain yield, seed protein concentration and early maturity in pea. A population of 88 recombinant inbred lines (RILs) that was developed from a cross between 'Carneval' and 'MP1401' was evaluated at 13 environments across the provinces of Alberta, Manitoba and Saskatchewan, Canada in 1998, 1999 and 2000. A linkage map consisting of 193 AFLPs (amplified fragment length polymorphism), 13 RAPDs (random amplified polymorphic DNA) and one STS (sequence tagged site) marker was used to identify putative quantitative trait loci (QTL) for grain yield, seed protein concentration and early maturity. Four QTL were identified each for grain yield and days to maturity, and three QTL were identified for seed protein concentration. A multiple QTL model for each trait showed that these genomic regions accounted for 39%, 45% and 35% of the total phenotypic variation for grain yield, seed protein concentration and days to maturity, respectively. The consistency of these QTL across environments and their potential for marker-assisted selection are discussed in this report.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aastveit, A. H. & K. Aastveit, 1993. Effects of genotype-environment interactions of genetic correlations. Theor Appl Genet 86:1007–1013.

    Google Scholar 

  • Basten, C. J., B. S. Weir & Z. B. Zeng, 1994. Zmap—A QTL cartogra-pher. In: C. Smith, J. S. Gavora, B. Benkel, J. Chesnais, W. Fairfull, J. P. Gibson, B. W. Kennedy & E. B. Burnside (Eds.), Proceedings of the 5th World Congress on Genetics Applied to Livestock Pro-duction: Computing Strategies and Software, Vol. 22, pp. 65–66. 5th World Congress on Genetics Applied to Livestock Production, Guelph, Ontario, Canada.

  • Bertholdsson, N. O., 1990. The influence of pea plant ideotypes on seed protein content and seed yield. J Agron Crop Sci 164: 54–67.

    Google Scholar 

  • Bethlenfalvay, G. J., S. S. Abu-Shakra & D. A. Phillips, 1978. Inter-dependence of nitrogen and photosynthesis in Pisum sativum L. Plant Physiol 62:131–133.

    Google Scholar 

  • Bezant, J. H., D. A. Laurie, N. Pratchett, J. Chojeki & M. J. Kearsey, 1997. Mapping of QTL controlling NIR predicted hot water ex-tract and grain nitrogen content in a spring barley cross using marker regression. Plant Breed 116:141–145.

    Google Scholar 

  • Chung, J., H. L. Babka, G. L. Graef, P. E. Staswick, D. J. Lee, P. B. Cregan, R. C. Shoemaker & J. E. Specht, 2003. The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci 43: 1053–1067.

    Google Scholar 

  • Churchill, G. A. & R. W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138:963–971.

    Google Scholar 

  • Csan´ adi, G., J. Vollmann, G. Stift & T. Lelley, 2001. Seed quality QTLs identified in a molecular map of early maturing soybean. Theor Appl Genet 103:912–919.

    Google Scholar 

  • Dhugga, K. & J. G. Waines, 1989. Analysis of nitrogen accumulation and use in bread and durum wheat. Crop Sci 25:435–440.

    Google Scholar 

  • Diers, B. W., W. Fehr, P. Keim & R. C. Shoemaker, 1992. RFLP anal-ysis of soybean seed protein and oil content. Theor Appl Genet 83: 608–612.

    Google Scholar 

  • Dirlewanger, E., P. G. Isaac, S. Ranade, M. Belajouza, B. Cousin & D. de Vienne, 1994. Restriction fragment length polymorphism analysis of loci associated with disease resistance genes and de-velopmental traits in Pisum sativum L. Theor Appl Genet 88: 17–27.

    Google Scholar 

  • Ellis, T. H. N. & S. J. Poyser, 2002. An integrated and comparative view of pea genetic and cytogenetic maps. New Phytologist 153: 17–25.

    Google Scholar 

  • Gilpin, B. J., J. A. McCallum, T. J. Frew & G. M. Timmerman-Vaughan, 1997. A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and ex-pressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299.

    Google Scholar 

  • Guéguen, J. & J. Barbot, 1988. Quantitative and qualitative variabil-ity of pea (Pisum sativum L.) protein composition. J Sci Food Agric 42:209–224.

    Google Scholar 

  • Joppa, L. R., C. Du, G. E. Hart & G. A. Hareland, 1997. Mapping genes for grain protein in tetraploid wheat (T. turdigum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37: 1586–1589.

    Google Scholar 

  • Karjalainen, R. & S. Kortet, 1987. Environmental and genetic varia-tion in protein content of peas under northern growing conditions and breeding implications. J Agric Sci 59:1–9.

    Google Scholar 

  • Kielpinski, M. & S. Blixt, 1982. The evaluation of the afila character with regard to its utility in new cultivars of dry pea. Agri Hortique Genetica 51–72.

  • Kramer, T., 1979. Environmental and genetic variations for protein content in winter wheat (Triticum aestivum L.). Euphytica 28: 209–218.

    Google Scholar 

  • Lark, K. G., J. Orf & L. M. Mansur, 1994. Epistatic expression of quantitative trait loci (QTLs) in soybean [Glycine max (L.) Merr. ] determined by QTL association with RFLP alleles. Theor Appl Genet 88:486–489.

    Google Scholar 

  • Laucou, V., K. Haurogné, N. Ellis & C. Rameau, 1998. Genetic mapping in pea 1. RAPD-based genetic linkage map of Pisum sativum. Theor Appl Genet 97:905–915.

    Google Scholar 

  • Lee, S. H., M. A. Bailey, M. A. R. Mian, T. E. Carter Jr., E. R. Shipe, D. A. Ashley, W. A. Parrot, R. S. Hussey & H. R. Boerma, 1996. RFLP loci associated with soybean seed protein and oil content across populations and locations. Theor Appl Genet 93:649–657.

    Google Scholar 

  • Mansur, L. M., K. G. Lark, H. Kross & A. Oliveria, 1993. Interval mapping of quantitative trait loci for reproductive, morphological and seed traits of soybean (Glycine max L.). Theor Appl Genet 86: 907–913.

    Google Scholar 

  • Matta, N. K. & J. A. Gatehouse, 1982. Inheritance and mapping of storage protein genes in Pisum sativum L. Heredity 48:383–392.

    Google Scholar 

  • McCallum, J., G. M. Timmerman-Vaughan, T. J. Frew & A. C. Russell, 1997. Biochemical and genetic linkage analysis of green seed color in field pea (Pisum sativum L.). J Am Soc Hortic Sci 122: 218–225.

    Google Scholar 

  • Monaghan, J. M., J. W. Snape, A. J. S. Chojecki & P. S. Kettlewell, 2001. The use of grain protein deviation for identifying wheat cultivars with high grain protein concentration and yield. Euphyt-ica 122: 309–317.

    Google Scholar 

  • Oziel, A., P. M. Hayes, F. Q. Chen & B. Jones, 1996. Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed 115:43–51.

    Google Scholar 

  • Perez, D., S. Chambers, J. Bacon, M. Morgan, N. Lambert, C. Hed-ley & T. Wang, 1992. Quantitative analysis of pea seed proteins from existing and induced mutants. In: P. Plancquaert (Ed.), Proceedings of the First European Conference of Grain Legumes, 173–174. Angers, France, 1–3 June 1992.

  • Pilet-Nayel, M. L., F. J. Muehlbauer, R. J. McGee, J. M. Kraft, A. Baranger & C. J. Coyne, 2002. Quantitative trait loci for partial resistance to Aphanomyces root rot in pea. Theor Appl Genet 106: 28–39.

    Google Scholar 

  • Powell, W., W. T. B. Thomas, E. Baird, P. Lawrence A. Booth, J. W. Harrower, W. Mcnicol & R. Waugh, 1997. Analysis of quanti-tative traits in barley by the use of amplified fragment length polymorphisms. Heredity 79:48–59.

    Google Scholar 

  • Qiu, B. X., P. R. Arelli & D. A. Sleper, 1999. RFLP markers associated with soybean cyst nematode resistance and seed composition in a Peking x Essex population. Theor Appl Genet 98:356–364.

    Google Scholar 

  • Saghai-Maroof, M. A., K. M. Soliman, R. Jorgensen & R. W. Allard, 1984. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018.

    Google Scholar 

  • Santalla, M., J. M. Amurrio & A. M. De Ron, 2001. Food and feed po-tential breeding value of green, dry and vegetable pea germplasm. Can J Plant Sci 81:601–610.

    Google Scholar 

  • Sebolt, A. M., R. C. Shoemaker & B. W. Diers, 2000. Analysis of quantitative trait locus allele from wild soybean that increases seed protein concentration in soybean. Crop Sci 40:1438–1444.

    Google Scholar 

  • See, D., V. Kanazin, K. Kephart & T. Blake, 2002. Mapping genes controlling variation in barley grain protein concentration. Crop Sci 42:680–685.

    Google Scholar 

  • Séne, M., C. Thévenot, D. Hoffmann, F. B énétrix, M. Causse & J. L. Prioul, 2001. QTLs for grain dry milling properties, composition and vitreousness in maize recombinant inbred lines. Theor Appl Genet 102:591–599.

    Google Scholar 

  • Simmonds, N. W., 1995. The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315.

    Google Scholar 

  • Swiecicki, W. K., J. Przybylska & Z. Zimniak-Przybylska, 2000. Linkages of the Aba (Albumin a) locus with markers of the linkage group VI. Pisum Genet 32:46–47.

    Google Scholar 

  • Tan, Y. F., M. Sun, Y. Z. Xing, J. P. Hua, X. L. Sun, Q. F. Zhang & H. Corke, 2001. Mapping quantitative trait loci for milling qual-ity, protein content and color characteristics of rice using a recom-binant inbred line population derived from an elite rice hybrid. Theor Appl Genet 103:1037–1045.

    Google Scholar 

  • Tar'an, B., T. Warkentin, D. J. Somers, D. Miranda, A. Vandenberg, S. Blade, S. Woods, D. Bing, A. Xue, D. DeKoeyer & G. Penner, 2003. Quantitative trait loci for lodging resistance, plant height and partial resistance to mycosphaerella blight in field pea (Pisum sativum L.). Theor Appl Genet107:1482–1491.

    Google Scholar 

  • Timmerman-Vaughan, G. M., T. J. Frew, A. C. Russell, T. Khan, R. Butler, M. Gilpin, S. Murray & K. Falloon, 2002. QTL map-ping of partial resistance to field epidemics of ascochyta blight of pea. Crop Sci 42:2100–2111.

    Google Scholar 

  • Timmerman-Vaughan, G. M., T. J. Frew & N. F. Weeden, 2000. Char-acterization and linkage mapping of R-gene analogous DNA se-quences in pea (Pisum sativum L.). Theor Appl Genet 101:241–247.

    Google Scholar 

  • Timmerman-Vaughan, G. M., J. A. McCallum, T. J. Frew, N. F. Weeden & A. C. Russell, 1996. Linkage mapping of quantita-tive loci controlling seed weight in pea (Pisum sativum L.). Theor Appl Genet 93:431–439.

    Google Scholar 

  • Turner, S. R., D. H. P. Barrat & R. Casey, 1990. The effect of different alleles at the r locus on the synthesis of seed storage proteins in Pisum sativum. Plant Mol Biol 14:793–803.

    Google Scholar 

  • Weeden, N. F., T. H. N. Ellis, G. M. Timmerman-Vaughan, W. K. Swiecicki, S. M. Rozov & V. A. Berdnikov, 1998. A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tar'an, B., Warkentin, T., Somers, D. et al. Identification of quantitative trait loci for grain yield, seed protein concentration and maturity in field pea (Pisum sativum L.). Euphytica 136, 297–306 (2004). https://doi.org/10.1023/B:EUPH.0000032721.03075.a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:EUPH.0000032721.03075.a0

Navigation