Skip to main content
Log in

Transient Expression of MDR-1/P-Glycoprotein in a Model of Partial Cortical Devascularization

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. MDR-1 gene product confer to expressing cells the multidrug resistance phenotype to a broad range of drugs and xenobiotics.

2. It is known that different stress signals are able to induce MDR-1 expression through different promoters.

3. In a rat model of ischemia by partial cortical devascularization we studied the expression profile and the cellular localization of MDR-1 after 1, 3, 7, 14 and 28 days post lesion (DPL).

4. Using two different antibody clones we found that MDR-1 is expressed in cortical and striatal neurons ipsilateral to the devascularizing lesion, starting at 1DPL, showing a maximum at 7DPL to be thereafter reduced until undetectable levels by 28DPL.

5. MDR-1 expression may be defining a neuronal subset with a particular pharmacological profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Chávez, J. C., and LaManna, J. C. (2002). Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia: potential role of insulin-like growth factor-1. J. Neurosci. 22:8922-8931.

    Google Scholar 

  • Chávez, J. C., Agani, F., Pichiule, P., and LaManna, J. C. (2000). Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J. Appl. Physiol. 89:1937-1942.

    Google Scholar 

  • Comerford, K. M., Wallace, T. J., Karhausen, J., Louis, N. A., Montalto, M. C., and Colgan, S. P. (2002). Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res. 62:3387-3394.

    Google Scholar 

  • D'Giano, C., Sevlever, G., and Lazarowski, A. (1997). Expression of P-glycoprotein and related proteins in brain of patients with refractory temporal-lobe epilepsy (TLE). psi 38 (Suppl. 8):87.

    Google Scholar 

  • Dombrowski, S. M., Desai, S. Y., Marroni, M., Cucullo, L., Goodrich, K., Bingaman, W., Mayberg, M. R., Bengez, L., and Janigro, D. (2001). Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501-1506.

    Google Scholar 

  • Figueiredo, B. C., Pluss, K., Skup, M., Otten, U., and Cuello, A. C. (1995). Acidic FGF induces NGF and its mRNA in the injured neocortex of adult animals. Mol. Brain Res. 33:1-6.

    Google Scholar 

  • Herrera, D. G., and Cuello, A. C. (1992). Glial fibrillary acidic protein immunoreactivity following cortical devascularizing lesion. Neuroscience 49:781-791.

    Google Scholar 

  • Higgins, C. F., Hyde, S. C., Mimmack, M. M., Gileadi, U., Gill, D. R., and Gallagher, M. P. (1990). Binding protein-dependent transport systems. J. Bioenerg. Biomembr. 22:571-592.

    Google Scholar 

  • Jiang, Y., Wu, J., Keep, R. F., Hua, Y., Hoff, J. T., Xi, G. (2002). Hypoxia-inducible factor-1 alpha accumulation in the brain after experimental intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 22:689-696.

    Google Scholar 

  • Kwan, P., Sills, G. J., Butler, E., Gant, T. W., Meldrum, B. S., and Brodie, M. J. (2002). Regional expression of multidrug resistance genes in genetically epilepsy-prone rat brain after a single audiogenic seizure. Epilepsia 43:1318-1323.

    Google Scholar 

  • Lazarowski, A., Sevlever, G., Taratuto, A., Massaro, M., and Rabinowicz, A. (1999). Tuberous sclerosis associated with MDR1 gene expression and drug-resistant epilepsy. Pediatr. Neurol. 21:731-734.

    Google Scholar 

  • Lee, C. H. (2002). Differential regulation of P-glycoprotein genes in primary rat hepatocytes by collagen sandwich and drugs. J. Cell. Biochem. 86:12-20.

    Google Scholar 

  • Loscher, W., and Potschka, H. (2002). Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J. Pharmacol. Exp. Ther. 301:7-14.

    Google Scholar 

  • Notarbartolo, M., Cervello, M., Dusonchet, L., Cusimano, A., and D'Alessandro, N. (2002). Resistance to diverse apoptotic triggers in multidrug resistant HL60 cells and its possible relationship to the expression of P-glycoprotein, Fas and of the novel anti-apoptosis factors IAP (inhibitory of apoptosis proteins). Cancer Lett. 180:91-101.

    Google Scholar 

  • Potschka, H., Fedrowitz, M., and Loscher, W. (2002). P-glycoprotein-mediated efflux of phenobarbital, lamotrigine, and felbamate at the blood-brain barrier: Evidence from microdialysis experiments in rats. Neurosci. Lett. 327:173-176.

    Google Scholar 

  • Ramos, A. J., Ortiz de Rozas, J. M., Brusco, A., and Villar, M. J. (2002). Neuronal and glial alterations after cortical devascularization. J. Neurochem. 81 (Suppl. 1):AP06.

    Google Scholar 

  • Ramos, A. J., Tagliaferro, P., Lopez, E. M., Pecci Saavedra, J., and Brusco, A. (2000). Neuroglial interactions in a model of para-chlorophenylalanine-induced serotonin depletion. Brain Res. 883:1-14.

    Google Scholar 

  • Sakaeda, T., Nakamura, T., Hirai, M., Kimura, T., Wada, A., Yagami, T., Kobayashi, H., Nagata, S., Okamura, N., Yoshikawa, T., Shirakawa, T., Gotoh, A., Matsuo, M., and Okumura, K. (2002). MDR1 up-regulated by apoptotic stimuli suppresses apoptotic signaling. Pharm. Res. 19:1323-1329.

    Google Scholar 

  • Seegers, U., Potschka, H., and Loscher, W. (2002a). Transient increase of P-glycoprotein expression in endothelium and parenchyma of limbic brain regions in the kainate model of temporal lobe epilepsy. Epilepsy Res. 51:257-268.

    Google Scholar 

  • Seegers, U., Potschka, H., and Loscher, W. (2002b). Expression of the multidrug transporter P-glycoprotein in brain capillary endothelial cells and brain parenchyma of amygdala-kindled rats. Epilepsia 43:675-684.

    Google Scholar 

  • Sisodiya, S. M., Lin, W. R., Harding, B. N., Squier, M. V., and Thom, M. (2002). Drug resistance in epilepsy: expression of drug resistance proteins in common causes of refractory epilepsy. Brain 125:22-31.

    Google Scholar 

  • Skatrud, P. L. (2002). The impact of multiple drug resistance (MDR) proteins on chemotherapy and drug discovery. Prog. Drug Res. 58:99-131.

    Google Scholar 

  • Stein, U., Jurchott, K., Schlafke, M., and Hohenberger, P. (2002). Expression of multidrug resistance genes MVP, MDR1, and MRP1 determined sequentially before, during, and after hyperthermic isolated limb perfusion of soft tissue sarcoma and melanoma patients. J. Clin. Oncol. 20:3282-3292.

    Google Scholar 

  • Tajrine, D., Garofalo, L., Cuello, A. C., and Ribeiro-da-Silva, A. (1997). Responses of cortical noradrenergic and somatostinergic fibres and terminals to adjacent strokes and subsequent treatment with NGF and/or the ganglioside GM1. J. Neurosci. Res. 50:627-642.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, A.J., Lazarowski, A., Villar, M.J. et al. Transient Expression of MDR-1/P-Glycoprotein in a Model of Partial Cortical Devascularization. Cell Mol Neurobiol 24, 101–107 (2004). https://doi.org/10.1023/B:CEMN.0000012728.19117.73

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CEMN.0000012728.19117.73

Navigation