Skip to main content
Log in

Macroporous Silicon Electrical Sensor for DNA Hybridization Detection

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Macroporous silicon (pore diameter 1–2 μm) was used in an electrical sensor for real time, label free detection of DNA hybridization. Electrical contacts were made exclusively on the back side of the substrate, which allowed complete exposure of the porous layer to DNA. Hybridization of a DNA probe with its complementary sequence produced a reduction in the impedance and a shift in the phase angle resulting from a change in dielectric constant inside the porous matrix and a modification of the depletion layer width in the crystalline silicon structure. The effect of the DNA charge on the response was corroborated using peptide nucleic acid (PNA), an uncharged analog of DNA. The sensitivity and selectivity of the device were characterized and the sensing properties of the porous layer alone were investigated using self-supporting macroporous silicon membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Archer, M. Christophersen, P.M. Fauchet, D. Persaud, and K.D. Hirschman, Mat. Res. Soc. Symp. Proc. Vol. 782, A7.2.1–A7.2.7 (2004b).

    Google Scholar 

  • M. Archer, M. Christophersen, and P.M. Fauchet. Accepted for publication in Sensors and Activators (2004).

  • M. Archer and P.M. Fauchet, Physica Status Solidi A 198, 503 (2003).

    Google Scholar 

  • H. Bemey, J. West, E. Haefele, J. Alderman, W. Lane, and J.K. Collins, Sensors and Actuators B 68, 100 (2000).

    Google Scholar 

  • Y.C. Cao, R. Jin, and C.A. Mirkin, Science 297, 1536 (2002).

    Google Scholar 

  • S. Chan, S. Homer, P.M. Faucher, and B.L. Miller, Journal of the American Chemical Society 123, 11797 (2001).

    Google Scholar 

  • J.P. Cloarec, J.R. Martin, C. Ploychronakos, I. Lawrence, M.F. Lawrence, and E. Souteyrand, Sensors and Actuators B 58, 394 (1999).

    Google Scholar 

  • Y. Cui, Q. Wei, H. Park, and C.M. Lieber, Science 293, 1289 (2001).

    Google Scholar 

  • K.-P.S. Dancil, D.P. Greiner, and M.J. Sailor, Journal of the American Chemical Society 121, 7925 (1999).

    Google Scholar 

  • X. Fang, X. Liu, S. Schuster, and W. Tan, Journal of the American Chemical Society 121, 2921 (1999).

    Google Scholar 

  • H. Foell, M. Christophersen, J. Carstensen, and G. Hasse, Materials Science and Engineering R R39, 93 (2002).

    Google Scholar 

  • J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, and S.R. Manalis, Proceedings of the National Academy of Sciences U.S.A. 99, 14142 (2002).

    Google Scholar 

  • J. Hahm and C.M. Lieber, Nano Letters 4, 51 (2004).

    Google Scholar 

  • J. Hirabayashi, Trends in Biotechnology 21, 141 (2003).

    Google Scholar 

  • J. Homola, S.S. Yee, and G. Gauglitz, Sensors and Actuators B 54, 3 (1999).

    Google Scholar 

  • A. Janshoff, K.-P.S. Dancil, C. Steinem, D.P. Greiner, V. Lin, C. Gurmer, K. Motesharei, M.J. Sailor, and M.R. Ghadiri, Journal of the American Chemical Society 120, 12108 (1998).

    Google Scholar 

  • I. Manelli, M. Minunni, S. Tombelli, and M. Mascini, Biosensors and Bioelectronics 18, 129 (2003).

    Google Scholar 

  • F. Moeller, M. Ben-Chorin, and F. Koch, in Solid Films 55, 16 (1995).

    Google Scholar 

  • H.H. Okom-Schmidt, IBM Journal of Research and Development 43, 351 (1999).

    Google Scholar 

  • E. Palecek and F. Jelen, Critical Reviews in Analytical Chemistry 32, 261 (2002).

    Google Scholar 

  • A.W. Peterson, L.K. Wolf, and R.M. Georgiadis, Journal of the American Chemical Society 293, 14601 (2002).

    Google Scholar 

  • A.W. Peterson, R.J. Heaton, and R.M. Georgiadis, Nucleic Acids Research 29, 5163 (2001).

    Google Scholar 

  • R. Raiteri, M. Grattarola, H.-J. Butt, and P. Skladal, Sensors and Actuators B 79, 115 (2001).

    Google Scholar 

  • A. Simonis, C. Ruge, M. Mueller-Veggian, H. Lueth, and M.J. Schoening, Sensors and Actuators B 91, 21 (2003).

    Google Scholar 

  • E. Souteyrand, J.P. Cloarec, J.R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, and M.F. Lawrence, Journal of Physical Chemistry B 101, 2980 (1997).

    Google Scholar 

  • M. Stewart and J. Buriak, Advanced Materials 12, 859 (2000).

    Google Scholar 

  • J. Wang, Nucleic Acids Research 28, 3011 (2000).

    Google Scholar 

  • J. Wang, Chemistry-A European Journal 5, 1681 (1999).

    Google Scholar 

  • J. Wang and A.J. Bard, Analytical Chemistry 73, 2207 (2001).

    Google Scholar 

  • J. Wang, E. Palecek, P.E. Nielsen, G. Rivas, X. Cai, H. Shiraishi, N. Dontha, D. Luo, and P.A.M. Farias, Journal of the American Chemical Society 118, 757 (1996).

    Google Scholar 

  • S.B. Weisman and T. D Singer, Biotechnolgy Advances 20, 379 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Archer, M., Christophersen, M. & Fauchet, P. Macroporous Silicon Electrical Sensor for DNA Hybridization Detection. Biomedical Microdevices 6, 203–211 (2004). https://doi.org/10.1023/B:BMMD.0000042049.85425.af

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BMMD.0000042049.85425.af

Navigation