Skip to main content
Log in

The Genetic Structure of Oreochromis spp. (Tilapia) Populations in Malaysia as Revealed by Microsatellite DNA Analysis

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

The genetic make-up of five populations of Oreochromis spp. was examined by microsatellite analysis. Eleven polymorphic microsatellite loci showed significant departures from the Hardy–Weinberg equilibrium. The mean heterozygosity ranged from 0.6280 to 0.7040 for each population. The genetic distance values showed a clear separation between O. niloticus and O. mossambicus. The differentiation of the O. niloticus populations was then tested with various genetic measures, which are based on both the Infinite Allele and the Stepwise Mutation models. All these measures grouped the populations similarly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Appleyard, S. A. (1998). The Application Of Genetic Markers to Fijian Tilapia Stock Management, PhD thesis, Queensland University of Technology, Brisbane, Queensland, Australia.

    Google Scholar 

  • Carvalho, G. R., and Hauser, L. (1994). Molecular genetics and the stock concept in fisheries. Rev. Fish Biol. Fish. 4:326–350.

    Google Scholar 

  • Cavalli-Sforza, L., Menozzi, P., and Piazza, A. (1994). The History and Geography of Human Genes, University Press, Princeton, NJ.

    Google Scholar 

  • Estoup, A., Garnery, L., Solignac, M., and Cornuet, J. M. (1995). Microsatellite variation in honey bee (Apis mellifera L.) populations: Hierarchical genetic structure and test of the Infinite Allele and Stepwise Mutation Models. Genetics 140:679–695.

    PubMed  Google Scholar 

  • FAO (2000). http://www.foa.org/waicent/portal/statistics en.asp Fisheries Statistics The state of Rome. World Fisheries and Aquaculture (1999).

  • Felsenstein, J. (1993). PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle.

    Google Scholar 

  • Goldstein, D. B., Linares, A. R., Sforza, L. L. C., and Feldman, M. W. (1995). An evaluation of genetic distances for use with microsatellite loci. Genetics 139:463–471.

    PubMed  Google Scholar 

  • Harvey, B. J. (1986). Gamete banking and applied genetics in aquaculture. In Proceedings of World Symposium on Selection, Hybridization and Genetic Engineering in Aquaculture, Bordeux, Berlin, May 27-30, 1986, Vol. I, pp. 258–263.

    Google Scholar 

  • Lee, W. J., and Kocher, T. D. (1996). Microsatellite DNA markers for genetic mapping in O. niloticus. Fish Biol. 49:169–171.

    Google Scholar 

  • Lewis, P. O., and Zaykin, D. (1996). Software for the Analysis of Discrete Genetic Data. Available at http://chee.unm.edu/gda/

  • Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27:209.

    PubMed  Google Scholar 

  • Minch, E., Ruiz-Linares, A., Goldstein, D. B., Feldman, M. W., and Cavalli-Sforza, L. L. (1995). MICROSAT (Version 1.4): A Computer Program for Calculating Various Statistics on Microsatellite Allele Data. Available at www:http://lotka.stanford.edu/research/distance.html

  • Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. U.S.A. 70:3321–3323.

    Google Scholar 

  • Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590.

    Google Scholar 

  • Nei, M., Tajima, F., and Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data II. Gene frequency data. J. Mol. Evol. 19:153–170.

    PubMed  Google Scholar 

  • Padmaja, K. (1995). Biochemical Polymorphisms in SevenOreochromis Strains of Southeast Asia, Master thesis, Department of Genetics and Cellular Biology, University of Malaya, Kuala Lumpur, Malaysia.

    Google Scholar 

  • Ruzzante, D. E. (1998). A comparison of several measures of genetic distance and population structure with microsatellite data: Bias and sampling variance. Can. J. Fish. Aquat. Sci. 55:1–14.

    Google Scholar 

  • Shriver, M. D., Jin, L., Boerwinkble, E., Deka, R., and Ferrell, R. E. (1995). A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol. Biol. Evol. 12:911–929.

    Google Scholar 

  • Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462.

    PubMed  Google Scholar 

  • Trewavas, E., (1983). Tilapiine Fishes of the Genera Sarotheredon, Oreochromis and Danakilia, British Natural History Museum, London.

    Google Scholar 

  • Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38:1359–1370.

    Google Scholar 

  • Wright, S. (1951). The genetic structure of populations. Ann. Eugen. 15:323–354.

    Google Scholar 

  • Yeh, F. C., Yang, R. C., Boyle, T. B. J., Ye, Z. H., and Mao, J. X. (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhassu, S., Yusoff, K., Panandam, J.M. et al. The Genetic Structure of Oreochromis spp. (Tilapia) Populations in Malaysia as Revealed by Microsatellite DNA Analysis. Biochem Genet 42, 217–229 (2004). https://doi.org/10.1023/B:BIGI.0000034426.31105.da

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIGI.0000034426.31105.da

Navigation