Skip to main content
Log in

Structural–Functional Units of Epidermis

  • Published:
Biology Bulletin of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

The available data suggest that epidermis is organized as a system of discrete structural–functional units (SFUs) that reproduce both in vivo and in vitro. SFUs are formed in the culture of epidermal keratinocytes via self-organization of the developing cellular elements. SFUs are capable of self-maintenance and form a niche for stem cells. At the same time, due to the maintenance of asymmetric proliferation kinetics of the stem cells, SFUs serve as a barrier to their uncontrolled replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Akhurst, R.J., Fee, F., and Balmain, A., Localized Production of TGF-β mRNA in Tumor Promoter-Stimulated Mouse Epidermis, Nature, 1988, vol. 331, pp. 363–365.

    Google Scholar 

  • Allen, T.D. and Potten, C.S., Fine Structural Identification and Organization of the Epidermal Proliferative Unit, J. Cell Sci., 1974, vol. 15, pp. 291–319.

    Google Scholar 

  • Araki, T., Naklo, H., Takeuchi, I., and Maeda, Y., Cell-Cycle-Dependent Sorting in the Development of Dictyostelium Cells, Dev. Biol., 1994, vol. 162, pp. 221–228.

    Google Scholar 

  • Barrandon, Y. and Green, H., Cell Size as a Determinant of the Clone-forming Ability of Human Keratinocytes, Proc. Natl. Acad. Sci. USA, 1985, vol. 82, pp. 5390–5394.

    Google Scholar 

  • Barrandon, Y. and Green, H., Three Clonal Types of Keratinocyte with Different Capacities for Multiplication, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 2302–2306.

    Google Scholar 

  • Bates, R.C., Buret, A., van Helden, D.F., Horton, M.A., and Burns, G.F., Apoptosis Induced by Inhibition of Intercellular Contact, J. Cell Biol., 1994, vol. 125, pp. 403–415.

    Google Scholar 

  • Batlle, E., Henderson, J.T., Beghtel, H., van den Born, M.M.W., Sancho, E., Huls, G., Meeldijk, J., Robertson, J., van de Wetering, M., Pawson, T., and Clevers, H., β-Catenin and TCF Mediate Cell Positioning in the Intestinal Epithelium by Controlling the Expression of EphB / EphrinB, Cell, 2002, vol. 111, pp. 251–263.

    Google Scholar 

  • Bennett, W.R., Crew, T.E., Slack, J.M.W., and Ward, A., Structural–Proliferative Units and Organ Growth: Effects of Insulin-like Growth Factor 2 on the Growth of Colon and Skin, Development, 2003, vol. 130, pp. 1079–1088.

    Google Scholar 

  • Boudreau, N., Werb, Z., and Bissel, M.J., Suppression of Apoptosis by Basement Membrane Requires Three-Dimensional Tissue Organization and Withdrawal from the Cell Cycle, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 3509–3513.

    Google Scholar 

  • Brachmann, R., Lindquist, P.B., Nagashima, M., Kohr, W., Lipari, T., Napier, M., and Derynck, R., Transmembrane TGF-α Precursors Activate EGF/TGF-α Receptors, Cell, 1989, vol. 56, pp. 691–700.

    Google Scholar 

  • Gandarillas, A., Goldsmith, L.A., Gschmeisner, S., Leigh, I.M., and Watt, F.M., Evidence That Apoptosis and Terminal Differentiation of Epidermal Keratinocytes Are Distinct Processes, Exp. Dermatol., 1999, vol. 8, pp. 71–79.

    Google Scholar 

  • Hall, P.A. and Watt, F.M., Stem Cells: The Generation and Maintenance of Cellular Diversity, Development, 1989, vol. 106, pp. 619–633.

    Google Scholar 

  • Hodivala, K.J. and Watt, F.M., Evidence That Cadherins Play a Role in the Downregulation of Integrin Expression That Occurs during Keratinocyte Terminal Differentiation, J. Cell Biol., 1994, vol. 124, pp. 589–600.

    Google Scholar 

  • Jones, P.H., Epithelial Stem Cells, BioEssays, 1997, vol. 19, pp. 683–690.

    Google Scholar 

  • Jones, P.H. and Watt, F.M., Separation of Human Epidermal Stem Cells from Transit Amplifying Cells on the Basis of Differences in Integrin Function and Expression, Cell, 1993, vol. 73, pp. 713–724.

    Google Scholar 

  • Jones, P.H., Harper, S., and Watt, F.M., Stem Cell Patterning and Fate in Human Epidermis, Cell, 1995, vol. 80, pp. 83–93.

    Google Scholar 

  • Kameda, T., Nakata, A., Mizutani, T., Terada, K., Iba, H., and Sugiyama, T., Analysis of the Cellular Heterogeneity in the Basal Layer of Mouse Ear Epidermis: An Approach from Partial Decomposition in vitro and Retroviral Cell Marking in vivo, Exp. Cell Res., 2003, vol. 283, pp. 167–183.

    Google Scholar 

  • Kane, C.J.M., Knapp, A.M., Mansbridge, J.N., and Hanawalt, P.C., Transforming Growth Factor β1 Localization in Normal and Psoriatic Epidermal Keratinocytes in situ, J. Cell Physiol., 1990, vol. 144, pp. 144–150.

    Google Scholar 

  • Khrushchov, G.K. and Brodsky, V.Ya., Organ and Cell (Certain Problems of Cytology and Histology), Usp. Sovrem. Biol., 1961, vol. 52, no.2 (5), pp. 181–207.

    Google Scholar 

  • Kolodka, T.M., Garlick, J., and Taichman, L.B., Evidence for Keratinocyte Stem Cells in vitro: Long Term Engraftment and Persistence of Transgene Expression from Retrovirus-Transduced Keratinocytes, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 4356–4361.

    Google Scholar 

  • Letuchaya, F.M. and Ketlinskii, S.A., Formation of Epidermal “Functional Units” during Rat Epidermis Histogenesis, Tsitologiya, 1980, vol. 22, pp. 176–180.

    Google Scholar 

  • Lindner, G., Menrad, A., Gherardi, E., Merlino, G., Welker, P., Handjiski, B., Roloff, B., and Paus, R., Involvement of Hepatocyte Growth Factor / Scatter Factor and Met Receptor Signaling in Hair Follicle Morphogenesis and Cycling, FASEB J., 2000, vol. 14, pp. 319–332.

    Google Scholar 

  • Lowell, S., Jones, P., Le Roux, I., Dunne, J., and Watt, F.M., Stimulation of Human Epidermal Differentiation by Delta-Notch Signalling at the Boundaries of Stem-Cell Clusters, Curr. Biol., 2000, vol. 10, pp. 491–500.

    Google Scholar 

  • Maas-Szabowski, N., Stark, H.-J., and Fusenig, N.E., Keratinocyte Growth Regulation in Defined Organotypic Cultures through IL-1-Induced Keratinocyte Growth Factor Expression in Resting Fibroblasts, J. Invest. Dermatol., 2000, vol. 114, pp. 1075–1084.

    Google Scholar 

  • Mackenzie, I.C., Relationship between Mitosis and the Ordered Structure of the stratum corneum in Mouse Epidermis, Nature, 1970, vol. 226, pp. 653–655.

    Google Scholar 

  • Mackenzie, I.C. and Bickenbach, J.R., Label-Retaining Keratinocytes and Langerhans Cells in Mouse Epithelia, Cell Tissue Res., 1985, vol. 242, pp. 551–556.

    Google Scholar 

  • Nose, A., Nagafuchi, A., and Takeichi, M., Expressed Recombinant Cadherins Mediate Cell Sorting in Model System, Cell, 1988, vol. 54, pp. 993–1001.

    Google Scholar 

  • Potten, C.S., The Epidermal Proliferative Unit: The Possible Role of the Central Basal Cell, Cell Tissue Kinet., 1974, vol. 7, pp. 77–88.

    Google Scholar 

  • Potten, C.S., Stem Cells in Epidermis from the Back of the Mouse, in Stem Cells: Their Identification and Characterization, Potten, C.S., Ed., 1983, pp. 200–232.

  • Potten, C.S. and Hendry, J.H., Clonogenic Cells and Stem Cells in Epidermis, Int. J. Radiat. Biol., 1973, vol. 24, pp. 537–540.

    Google Scholar 

  • Raff, M., Social Controls on Cell Survival and Cell Death, Nature, 1992, vol. 356, pp. 397–400.

    Google Scholar 

  • Rheinwald, J.G. and Green, H., Serial Cultivation of Strains of Human Epidermal Keratinocytes: The Formation of Keratinizaing Colonies from Single Cells, Cell, 1975, vol. 6, pp. 331–344.

    Google Scholar 

  • Rodeck, U., Jost, M., Kari, C., Shih, D.T., Lavker, R.M., Ewert, D.L., and Jensen, P.J., EGF-R Dependent Regulation of Keratinocyte Survival, J. Cell Sci., 1997, vol. 110, pp. 113–121.

    Google Scholar 

  • Schmidt, G.H., Blount, M.A., and Ponder, B.A., Immunochemical Demonstration of the Clonal Organization of Chimeric Mouse Epidermis, Development, 1987, vol. 100, pp. 535–541.

    Google Scholar 

  • Schofield, R., The Relationship between the Spleen Colony-Forming Cell and the Haemopoietic Stem Cell, Blood Cells, 1978, vol. 4, pp. 7–25.

    Google Scholar 

  • Sherley, J.L., Asymmetric Cell Kinetics Genes: The Key to Expansion of Adult Stem Cells in Culture, Stem Cells, 2002, vol. 20, pp. 561–572.

    Google Scholar 

  • Slack, J.M.W., Stem Cells in Epithelial Tissues, Science, 2000, vol. 287, pp. 1431–1433.

    Google Scholar 

  • Terskikh, V.V. and Vasiliev, A.V., Cultivation and Transplantation of Epidermal Keratinocytes, Int. Rev. Cytol., 1999, vol. 188, pp. 41–72.

    Google Scholar 

  • Wheelock, M.J. and Jensen, P.J., Regulation of Keratinocyte Intercellular Junction Organization and Epidermal Morphogenesis by E-Cadherin, J. Cell Biol., 1992, vol. 117, pp. 415–425.

    Google Scholar 

  • Zhang, W., Remenyik, E., Zelterman, D., Brash, D.E., and Wikonkal, N.M., Escaping the Stem Cell Compartment: Sustained UVB Exposure Allows p53-Mutant Keratinocytes to Colonize Adjacent Epidermal Proliferating Units without Incurring Additional Mutations, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 13948–13953.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terskikh, V.V., Vasiliev, A.V. & Vorotelyak, E.A. Structural–Functional Units of Epidermis. Biology Bulletin 30, 535–539 (2003). https://doi.org/10.1023/B:BIBU.0000007707.27823.be

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIBU.0000007707.27823.be

Keywords

Navigation