Skip to main content
Log in

Effects of pH and Dye Concentration on the Optical and Structural Properties of Coumarin-4 Dye-Doped SiO2-PDMS Xerogels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Optical and structural properties of coumarin-4 dye-doped SiO2-PDMS xerogels synthesized by acid catalyzed (one-step) and acid-base catalyzed (two-step) sol-gel routes with varying pH (0.6 to 7) and dye content ( 5 × 10−4 to 5 × 10−2 mole) are reported. Spectroscopic methods such as photo-luminescence, FT-IR and FT-Raman were used for characterizations. The acid catalyzed xerogels prepared with pH < 2.5 exhibited two fluorescence peaks, I at ∼390 nm and II at ∼480 nm. The acid-base catalyzed xerogels synthesized with pH < 2.5 also exhibited two peaks, I at ∼400 nm and II at ∼475 nm. Peak II was not observed for the samples with pH ≥ 2.5. This phenomenon was attributed to the existence of pH dependent different forms of coumarin-4 molecule. The concentration-quenching phenomenon was observed for the acid catalyzed xerogels prepared with different dye concentration. TheFT-IR spectra indicated the existence of hydrogen bonds between the carbonyl groups of dye molecules and the silanol groups of gel matrix. The hydrogen bonding was the highest for the samples with the extremity pH, 0.6 and 7, resulting in the highest dye/gel matrix interactions, hence, the highest fluorescence peaks. The Raman studies indicated that the samples prepared with pH < 2.5 possessed relatively more number of 3-membered siloxane rings than 4-membered siloxane rings. The ring statistics was reversed for the samples with pH > 2.5. The number of silanol groups was higher for the samples with pH > 2.5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dunn and J.I. Zink, J. Mater. Chem. 1, 903 (1991).

    Google Scholar 

  2. D. Avnir, D. Levy, and R. Reisfeld, J. Phys. Chem. 88, 5956 (1984).

    Google Scholar 

  3. H.T. Lin, E. Bescher, J.D. Mackenzie, H. Dai, and O.M. Stafsudd, J. Mater. Sci. 27, 5523 (1992).

    Google Scholar 

  4. G.D. Kim, D.A. Lee, and J.D. Kim, J. Sol-Gel Sci. Tech. 10, 283 (1997).

    Google Scholar 

  5. J.M. McKiernan, S.A. Yamanaka, E.T. Knobbe, J.C. Pouxviel, S. Parvenech, B. Dunn, and J.I. Zink, J. Inorg. Organomet. Polym. 1, 87 (1991).

    Google Scholar 

  6. T. Suratwala, Z. Gardlund, K. Davidson, D.R. Uhlmann, S. Bonilla, and N. Peyghambarian, J. Sol-Gel Sci. Tech. 8, 973 (1997).

    Google Scholar 

  7. T. Suratwala, Z. Gardlund, K. Davidson, D.R. Uhlmann, J. Watson, S. Bonilla, and N. Peyghambarian, Chem. Mater. 10, 199 (1998).

    Google Scholar 

  8. G. Qian, Z. Yang, and C. Yang, J. Appl. Phys. 88, 2503 (2000).

    Google Scholar 

  9. E. Stathatos, P. Lianos, U.L. Stangar, and B. Orel, Chem. Phys. Lett. 345, 381 (2001).

    Google Scholar 

  10. M. Laczka, K.C. Kowalska, and M. Kogut, J. Non-Cryst. Solid 287, 10 (2001).

    Google Scholar 

  11. T. Suratwala, Z. Gardlund, K. Davidson, D.R. Uhlmann, S. Bonilla, and N. Peyghambarian, J. Sol-Gel Sci. Tech. 8, 953 (1997).

    Google Scholar 

  12. S. Wu, W. Dong, and C. Zhu, Opt. Mater. 15, 167 (2000).

    Google Scholar 

  13. M. Krihak and M.R. Shahriari, Optical Mater. 5, 301 (1996).

    Google Scholar 

  14. E.O. Oh, K. Chakrabarti, H.Y. Jung, C.M. Whang, Mater. Sci. Eng. B 90, 60 (2002).

    Google Scholar 

  15. S.M. Kim, K. Chakrabarti, E.O. Oh, and C.M. Whang, J. Sol-Gel Sci. Tech. 27, 149 (2003).

    Google Scholar 

  16. Y. Hu and J. D. Mackenzie, J. Mater. Sci. 27, 4415 (1992).

    Google Scholar 

  17. T. Suratwala, K. Davidson, Z. Gardlund, and D.R. Uhlmann, SPIE 3136, 36 (1997).

    Google Scholar 

  18. T. Suratwala, Z. Gardlund, J.M. Boulton, D.R. Uhlmann, J. Watson, and N. Peyghambarian, SPIE 2288, 310 (1994).

    Google Scholar 

  19. Y. Takahashi, R. Shmada, A. Maeda, K. Kojima, and K. Uchida, J. Luminec. 68, 187 (1996).

    Google Scholar 

  20. Y. Takahashi, A. Maeda, K. Kojima, and K. Uchida, J. Luminec. 87–89, 767 (2000).

    Google Scholar 

  21. J. Seixas de Melo and P.F. Fernandes, J. Mol. Struct. 565/566, 69 (2001).

    Google Scholar 

  22. A. Bergman and J. Jortner, J. Lumines. 6, 390 (1973).

    Google Scholar 

  23. E. Vogel, A. Gbureck, and W. Kiefer, J. Mol. Struct. 550/551, 177 (2000).

    Google Scholar 

  24. A.C. Pierre, Introduction to Sol-Gel Processing (Kluwer, Massachusetts, 1998) p. 127 and 252.

    Google Scholar 

  25. W. Dong and C. Zhu, Mater. Lett. 45, 336 (2000).

    Google Scholar 

  26. E.O. Oh, R.K. Gupta, and C.M. Whang, Bull. Korean Chem. Soc. (2002) (submitted).

  27. A. Bertoluzza, C. Fagnano, M.A. Morelli, V. Gottardi, and M. Guglielmi, J. Sol-Gel Sci. Tech. 48, 117 (1982).

    Google Scholar 

  28. C.J. Brinker and G.W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, London, 1990) Chap. 9.

    Google Scholar 

  29. M.C. Matos, L.M. Ilharco, and R. M. Almeida, J. Non-Cryst. Solids 147/148, 232 (1992).

    Google Scholar 

  30. J.Y. Ying, J.B. Benziger, and A. Navrotsky, J. Am. Ceram. Soc. 76, 2571 (1993).

    Google Scholar 

  31. A. Fidalgo and L.M. Ilharco, J. Non-Cryst. Solids 283, 144 (2001).

    Google Scholar 

  32. J. Gallardo, A. Duran, D.D. Martino, and R.M. Almeida, J. Non-Cryst. Solids 298, 219 (2002).

    Google Scholar 

  33. N.B. Colthup, L.H. Daly, and S.E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic Press, NY, 1975) p. 216, 282 and 338.

    Google Scholar 

  34. A. Burneau and J.P. Gallas, in The Surface Properties of Silicas, edited by A.P. Legrand (John Wiley, NY, 1998) p. 147.

    Google Scholar 

  35. L.L. Hench, Sol-Gel Silica (Noyes Pub., NJ, 1998) Chap. 5.

    Google Scholar 

  36. P.N. Sen and M.F. Thorpe, Phys. Rev. B 15, 4030 (1977).

    Google Scholar 

  37. D. Wood and E. Rabinovich, Appl. Spectroscopy 43, 263 (1989).

    Google Scholar 

  38. T. Parril, J. Mater. Res. 7, 2230 (1992).

    Google Scholar 

  39. K. Kamiya, T. Yoko, T. Tanaka, and M. Takeuchi, J. Non-Cryst. Solids 126, 68 (1990).

    Google Scholar 

  40. S. Hayakawa and L.L. Hench, J. Non-Cryst. Solids 262, 264 (2000).

    Google Scholar 

  41. G.D. Kim, D.A. Lee, J.W. Moon, J.D. Kim, and J.A. Park, Appl. Organometal. Chem. 13, 361 (1999).

    Google Scholar 

  42. D.M. Krol and J.G. van Lierop, J. Non-Cryst. Solids 68, 163 (1984).

    Google Scholar 

  43. D.R. Tallant, B.C. Bunker, C.J. Binker, and C.A. Balfe, Mater. Res. Soc. Symp. 73, 261 (1986).

    Google Scholar 

  44. C.A.M. Mulder and A.A.J.M. Damen, J. Non-Cryst. Solids 93, 387 (1987).

    Google Scholar 

  45. X. Li and T.A. King, J. Non-Cryst. Solids 204, 235 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oh, E., Gupta, R. & Whang, C. Effects of pH and Dye Concentration on the Optical and Structural Properties of Coumarin-4 Dye-Doped SiO2-PDMS Xerogels. Journal of Sol-Gel Science and Technology 28, 279–288 (2003). https://doi.org/10.1023/A:1027442627485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027442627485

Navigation