Skip to main content
Log in

The high temperature reaction zone of the Oman ophiolite: new field data, microthermometry of fluid inclusions, PIXE analyses and oxygen isotopic ratios

  • Published:
Marine Geophysical Researches Aims and scope Submit manuscript

Abstract

The present study is focused on the so-called High Temprature Reaction Zone of the Oman ophiolite, a thin zone located between the roots of the sheeted dyke complex and the high-level gabbros marking the roof of the fossil magma chambers. The distribution of diabases, chloritised dykes, spilitized dykes and epidosites (in the order of increasing hydrothermal alteration) was studied along continuous outcrops of the lower sheeted dyke complex in three selected areas. The Muwaylah section, in the Haylayn massif, representing a fossil axial discontinuity, is the most massively epidotised area, with epidosite zones of 3–15 m wide and an average spacing of 12 m. In this area, there are two directions of dyking, and a massive sulfide deposit (Daris prospect). The wadi Andam area (Samail massif), representing a much less tectonised site, close to a mantle diapir and located probably midway between the tip and the center of an accretion segment, is also well epidotised, with epidosites spacing of 10–25 m. The wadi Salahi area probably represents the central part of a fossil accretion segment and is by far the least altered site, in spite of being located quite beneath the Zuha sulfide prospect. This confirms that the hot ascending fluids in major discharge zones are strongly focused. Fluid inclusions from about 50 samples collected in the plagiogranites, gabbros and sheeted dykes of the Muwaylah and wadi Falah areas (SE Haylayn massif), consist of: (1) monophase (liquid) inclusions, generally stretched and deformed; (2) vapour-dominated, low-salinity, 2-phase inclusions, with average salinity of 3.8 wt% eq. NaCl and an average Th of 370 °C; (3) liquid-dominated, low-salinity, 2-phase inclusions, with an average salinity of 4.2 wt% eq. NaCl and an average Th of 325 °C, and (4) liquid-dominated, high-salinity inclusions, containing a solid halite daughter phase, dissolving at higher temperature (292–441 °C ) than homogenisation of the fluid phases (230–403 °C ). One plagiogranite sample collected in the Muwaylah area (Haylayn massif) is particularly rich in quartz-epidote hydrothermal veins. Xenomorphic globular quartz is rich in high-salinity, brine-rich inclusions, with halite cubes dissolving at very high temperatures (358–496 °C ) yielding very high salinities (43 to 59.2% NaCl eq.), and with liquid-vapour homogenisation of 275 °C on average. Molecular Raman Spectroscopy analyses have confirmed the aqueous nature of these inclusions and the absence of detectable CO2, NH4, N2 and SO2. Daughter solid phases other than NaCl were determined as hematite and anhydrite, and a third phase is hydroxyl-bearing (amphibole?). PIXE analyses on six brine-rich inclusions allowed to detect significant but variable contents in Cl, Fe, Mn, K, Ca, Zn and Br. Copper, remarkably, was never detected, and two measured Cl/Br ratios are close to that of seawater. The measurement of oxygen isotopic ratios of the fluids extracted from some fluid inclusions and of associated host-minerals (quartz, epidote) suggest that both seawater-derived and magma-derived fluids have mixed in the High Temperature Reaction Zone. PIXE data yield a similar conclusion, based on the contrasted Fe and Mn-contents and Cl/Br ratios of the analysed inclusions. However, the oxidised and Cu-depleted nature of the brine-rich inclusions suggests that the magma-derived or seawater-derived brines are residual liquids that have degassed. Present V-X properties of most NaCl-saturated inclusions do not keep the record of the boiling process, as they homogenise by halite disappearance and not by vapour disappearance. Probably they have been modified by several post-trapping changes, for instance by necking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alabaster, T. and Pearce, J.A., 1985, The interrelationship between magmatic and ore forming hydrothermal processes in the Oman ophiolite, Econ. Geol. 80: 1–16.

    Google Scholar 

  • Alabaster, T., Pearce, J.A., Mallick, D.I.J. and El Boushi, I.M., 1980, The volcanic stratigraphy and location of massive sulphide deposits in the Oman ophiolite, In A. Panayiotou (ed.) Ophiolites, Proceedings of the International Ophiolite Symposium, Cyprus 1979, Geologocal Survey Dept, Nicosia, pp. 751–757.

    Google Scholar 

  • Alabaster, P., Pearce, J.A. and Malpas, J., 1982, The volcanic stratigraphy and petrogenesis of the Oman ophiolite complex, Contrib. Mineral. Petrol. 81: 168–183.

    Google Scholar 

  • Alt, J.C., 1995, Subseafloor processes in mid-ocean ridge hydrothermal systems, In Susan Humphris et al. (eds), Seafloor hydrothermal systems: physical, chemical, biological and geological interactions, AGU, Geophys. Monograph 91: 85–114.

  • Alt, J.C., Zuleger, E. and Erzinger J., 1995, Mineralogy and stable isotopic compositions of the hydrothermally altered lower sheeted dyke complex, Hole 504B, Leg 140, Proc. Ocean Drill. Program, Sci. Results, 137/140: 155–166.

  • Alt, J.C., Kinoshita, H., Stokking, L.B. and Michael, J.P., 1996, Proceedings of the Ocean Drilling Programme, College Station, Sci. Results, 148.

  • Anderson, A.J., Clark, A.H., Ma, X.P., Palmer, G.R., MacArthur, J.D. and Roedder, E., 1989, Proton-Induced X-Ray and Gamma-Ray Emission Analysis of Unopened Fluid Inclusions, Econ. Geol. 84: 924–939.

    Google Scholar 

  • Berndt, M.E. and Seyfried, W.E. Jr, 1990, Boron, bromine, and other trace elements as clues to the fate of chlorine in mid-ocean ridge vent fluids, Geochim. Cosmochim. Acta 54: 2235–2245.

    Google Scholar 

  • Bischoff, J.L., 1980, Geothermal system at 21°N, East Pacific Rise: physical limits on geothermal fluid and role of adiabatic expansion, Science 27: 1465–1469.

    Google Scholar 

  • Bischoff, J.L. and Rosenbauer, R.J., 1989, Salinity variation in submarine hydrothermal systems by layered double-diffusive convection, J. Geol. 97: 613–623.

    Google Scholar 

  • Bodnar, R.J., 1993, Revised equation and table for determining the freezing point depression of H2O-NaCl solutions, Geochim. Cosmochim. Acta 57: 683–684.

    Google Scholar 

  • Bodnar, R.J., 1994, Synthetic fluid inclusions: XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt% NaCl solutions, Geochim. Cosmochim. Acta 58: 1053–1063.

    Google Scholar 

  • Boudier, F. and Coleman, R.G., 1981, Cross section through the peridotite in the Semail ophiolite, southeastern Oman Mountains, J. Geophys. Res. 86: 2573–2592.

    Google Scholar 

  • Bougault, H., Charlou, J.L., Fouquet, Y. and Needham, H.D., 1990, Activité hydrothermale et structure axiale des dorsales est-pacifique et médio-atlantique, Oceanol. Acta Vol. spéc. 10: 199–207.

    Google Scholar 

  • Burnham, C.W. and Ohmoto, H., 1980, Late-stage processes of felsic magmatism, Min. Geol. Spec. Issue 8: 1–11.

    Google Scholar 

  • Butterfield, D.A., Massoth, G.J., Mc Duff, R.E., Lupton, J.E. and Lilley, M.D., 1990, Geochemistry of hydrothermal fluids from axial seamount emissions study vent field: Juan de Fuca Ridge, the Cleft Segment: sub-seafloor boiling and subsequent fluid interaction. J. Geophys. Res. 95: 12895–12921.

    Google Scholar 

  • Campbell, A.C. and Edmond, J.M., 1989, Halide systematics of submarine hydrothermal vents, Nature 342: 168–170.

    Google Scholar 

  • Cathless, L.M., 1983, An analysis of hydrothermal system responsible for massive sulfide deposition in the Hokuroku Basin of Japan, Econ. Geol. 5: 439–487.

    Google Scholar 

  • Ceuleneer, G., Nicolas, A. and Boudier, F., 1988, Mantle flow pattern at an oceanic spreading center: the Oman peridotites record, Tectonophysics 151: 1–26.

    Google Scholar 

  • Clayton, R.N. and Mayeda, T.K., 1963, The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analyses, Geochim. Cosmochim. Acta 27: 43–52.

    Google Scholar 

  • Cline, J.S. and Bodnar, R.J., 1991, Can economic porphyry copper mineralization be generated by a typical calk-alcaline melt? J. Geophys. Res. 96, 8113–8126.

    Google Scholar 

  • Cloke, P.L. and Kesler, S.E., 1979, The halite trend in hydrothermal solutions, Econ. Geol. 74: 1823–1831.

    Google Scholar 

  • Constantinou, G., 1987, Massive sulfide deposits, In C. Xenophontos and J.G. Malpas (ed.), Troodos 87, Ophiolites and Oceanic Lithosphere Symposium, Field excursion Guidebook, Geological Survey Dept of Cyprus, Nicosia, pp. 92–113.

    Google Scholar 

  • Cowan, J. and Cann, J., 1988, Supercritical two-phase separation of hydrothermal fluids in the Troodos ophiolite. Nature 333: 259–261.

    Google Scholar 

  • Craig, H., 1965, The measurement of oxygen isotope paleotemperatures, in Spoleto conference on stable isotopes in oceanographic studies and paleotemperatures, Proc., 3, Pisa, Italy, Consiglio Nazionale delle Recherche, Laboratorio di Geologia Nucleare, pp. 1–24.

    Google Scholar 

  • Dhamelincourt, P., Bény, J.M., Dubessy J. and Poty, B, 1979, Analyse d'inclusions fluides à la microsonde MOLE à effet Raman, Bull. Miner. 102: 600–610.

    Google Scholar 

  • Dick, H.J.B., Meyer, P.S., Bloomer, S., Kirby, S., Stakes, D. and Mawer, C., 1991, Lithostratigraphic evolution of an in-situ section of oceanic layer 3, In R.P. Von Herzen, P.T. Robinson et al. (eds), Proc. ODP Sci. Results, 118, College Station, pp. 439–537.

  • Dixon, S. and Rutherford, M., 1979, Plagiogranites as late-stage immiscible liquids in ophiolite and mid-ocean ridge suites: an experimental study, Earth and Planet. Sci. Letters 45: 45–60.

    Google Scholar 

  • Dodson, M.H., 1973, Closure temperature in cooling geochronological and petrological systems, Contrib. Mineral. Petrol. 40: 259–274.

    Google Scholar 

  • Drummond, S.E. and Ohmoto, H., 1985, Chemical evolution and mineral deposition in boiling hydrothermal systems, Econ. Geol. 80: 126–147.

    Google Scholar 

  • Dubois, M., 1984, Plagiogranites et hydrothermalisme: une approche à partir des complexes ophiolitiques de Chypre et d'oman. Ph.D. Thesis, Univ. Nancy I, France, pp. 135.

    Google Scholar 

  • Engelmann, C. and Revel, G., 1991, Design and possibilities of the new ‘Pierre Sue’ laboratory microprobe. Nuclear Instr. Meth. B54: 84–90.

    Google Scholar 

  • Fehn, U., Green, K.E., Von Herzn, R.P. and Cathles, L.M., 1983, Numerical models for the hydrothermal field at the Galapagos Spreading Center, J. Geophys. Res. 88: 1033–1048.

    Google Scholar 

  • Gunter, W.D., Chou I-Ming and Girsperger S., 1983, Phase relation in the system NaCl-KCl-H2O. II: Differential thermal analysis of the halite liquidus in the NaCl-H2O binary above 450 °C, Geochim. Cosmochim. Acta 47: 843–873.

    Google Scholar 

  • Haymon, R.M., Koski, R.A. and Sinclair, C., 1984, Fossils of hydrothermal vent worms discovered in Cretaceous sulfide ores of the Semail ophiolite, Oman, Science 223: 1407–1409.

    Google Scholar 

  • Haymon, R.M., Koski, R.A. and Abrams, M.J., 1989, Hydrothermal discharge zones beneath massive sulfide deposits mapped in the Oman ophiolite, Geology 17: 531–535.

    Google Scholar 

  • Henley, R.W. and McNabb, A., 1978, Magmatic vapour plumes and ground water interaction in porphyry copper emplacement. Econ. Geology 73: 1–20.

    Google Scholar 

  • Ixer, R.A., Alabaster, T. and Pearce, J.A., 1984, Ore petrography and geochemistry of massive-sulphide deposits within the Samail ophiolite, Oman, Trans. Inst. Min. Metall. B93: 114–124.

    Google Scholar 

  • Jehl, V., Poty, B. and Weisbrod, A., 1977, Hydrothermal metamorphism of the oceanic crust in North Atlantic Ocean, Bull. Soc. Géol. France XIX: 1213–1221.

    Google Scholar 

  • Juteau, T., Ernewein, M., Reuber, I., Whitechurch, H. and Dahl, R., 1988a, Duality of magmatism in the plutonic sequence of the Sumail nappe, Oman, Tectonophysics 151: 107–135.

    Google Scholar 

  • Juteau, T., Beurrier, M., Dahl, R. and Nehlig, P., 1988b, Segmentation at a fossil spreading axis: the plutonic sequence of the Wadi Haymiliyah area (Haylayn Block, Samail Nappe, Oman), Tectonophysics 151: 167–197.

    Google Scholar 

  • Kelley, D.S., 1990, Fluid circulation in a submarine paleohydrothermal system, Troodos ophiolite, Cyprus: fluid inclusion evidence for deep-seated circulation of brines in the oceanic crust. Ph.D. thesis, Dalhousie University, Halifax, Canada, pp. 168.

    Google Scholar 

  • Kelley, D.S. and Delaney, J.R., 1987, Two-phase separation and fracturing in mid-ocean gabbros at temperatures greater than 700 °C, Earth Planet. Sci. Lett. 83: 53–66.

    Google Scholar 

  • Kelley, D.S. and Robinson, P.T., 1990, Development of a brinedominated hydrothermal system at temperatures of 400–500 °C in the upper level plutonic sequence, Troodos ophiolite, Cyprus, Geochim. Cosmochim. Acta 54: 653–661.

    Google Scholar 

  • Kelley, D.S., Robinson, P.T. and Malpas, J.G., 1992, Processes of brine generation and circulation in the oceanic crust: fluid inclusion evidence from the Troodos ophiolite, Cyprus, J. Geophys. Res. 97: 9307–9322.

    Google Scholar 

  • Kelley, D.S., Vanko, D.A. and Gu, C., 1995, Fluid evolution in crustal layer 2: Fluid inclusion evidence from the sheeted dyke complex, Hole 504B, Costa Rica Rift, Proc. Ocean Drill Program, Sci. Results 140: 191–198.

    Google Scholar 

  • King, E.M., Barrie, C.T. and Valley, J.W., 1997. Hydrothermal alteration of oxygen isotope ratios in quartz phenocrysts, Kidd Creek mine, Ontario: Magmatic values are preserved in zircon. Geology 25: 1079–1082.

    Google Scholar 

  • Kishima, N. and Sakai, H., 1980. Oxygen-18 and deuterium determination on a single water sample of a few milligrams, Anal. Chem. 52: 356–358.

    Google Scholar 

  • Laverne, C., Vanko, D.A., Tartarotti, P. and Alt, J.C., 1995, Chemistry and geothermometry of secondary minerals from the deep sheeted dyke complex, Hole 504B, Proc. Ocean Drill. Program, Sci. Results 137/140, 167–189.

    Google Scholar 

  • Lécuyer, C., 1990, Hydrothermalisme fossile dans une paléo-croûte associée à un centre d'expansion lent: le complexe ophiolitique de Trinity (N. Californie, USA), Ph.D. thesis, Univ. Rennes I (France), Mémoires et Documents du CAESS, 33, pp. 279.

    Google Scholar 

  • Lécuyer C., Dubois M., Marignac Ch., Gruau G., Fouquet Y. and Ramboz C., 1999. Phase separation and fluid mixing in subseafloor back arc hydrothermal systems: A microthermometric and oxygen isotope study of fluid inclusions in the baryte-sulfide chimneys of the Lau basin, J. Geophys. Res. 104: 17 911–17 927.

    Google Scholar 

  • Lescuyer, J.L., Oudin, E. and Beurrier, M., 1988, Review of the different types of mineralization related to the Oman ophiolitic volcanism, in 7th IAGODD Symposium Lullea 1986 (Sweden), Schwetzerbart'sche, Stuttgart, Germany, pp. 489–500.

    Google Scholar 

  • Lippard, S.J., Shelton, A.W. and Gass, I.G., 1986, The ophiolite of northern Oman, The Geol Soc. Memoir No 11, Blackwell Sci. Publ., Oxford, pp. 178.

    Google Scholar 

  • Manac'h, G., 1997, Caractérisation des circulations fluides dans la croûte océanique actuelle (zone de fracture Blanco) et fossile (ophiolite d'Oman), Ph.D. thesis, Univ. Bretagne Occidentale, Brest, France, pp. 341.

    Google Scholar 

  • Maxwell, J.A., Teesdale, W.J. and Campbell, J.L. 1995, The Guelph PIXE software package II, Nuclear Instr. Meth. B49: 407–421.

    Google Scholar 

  • Mevel, C., 1984, Le métamorphisme dans la croûte océanique: apport de la pétrologie à la compréhension des phénomènes de circulation hydrothermale et de déformation (exemples dans l'Atlantique), Thesis Doctorat d'Etat, Univ. Paris VI, pp. 434.

  • Mevel, C. and Cannat, M., 1991, Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow-spreading ridges. In Tj. Peters et al. (eds), Ophiolite genesis and evolution of the oceanic lithosphere, Ministry of petroleum and Minerals, Sultanate of Oman, pp. 293–312.

    Google Scholar 

  • Moreau, O., 1998, Etude du système hydrothermal fossile de l'ophiolite d'Oman: étude microthermométrique d'un plagiogranite situé dans la zone de réaction au toit des chambres magmatiques, DEA Report, Univ. Bretagne Occidentale, Brest, France, pp. 71.

    Google Scholar 

  • Muenow, D.W., Garcia, M.O., Aggrey, K.E., Bednarz, U. and Schminke, H.U., 1990, Volatiles in submarine glasses as a discriminant of tectonic origin: application to the Troodos ophiolite, Nature 343: 159–161.

    Google Scholar 

  • Nehlig, P., 1989, Etude d'un système hydrothermal océanique fossile: l'ophiolite de Semail (Oman). Ph.D. thesis, Univ. Bretagne Occidentale, Brest, France, pp. 600.

    Google Scholar 

  • Nehlig, P., 1991, Salinity of oceanic hydrothermal fluids: a fluid inclusion study, Earth Planet. Sci. Lett. 102: 310–325.

    Google Scholar 

  • Nehlig, P., 1993, Interactions between magma chambers and hydrothermal systems: oceanic and ophiolitic constraints, J. Geophys. Res. 98: 19621–19633.

    Google Scholar 

  • Nehlig, P. and Juteau, T., 1988a, Flow porosities, permeabilities and preliminary data on fluid inclusions and fossil thermal gradients in the crustal sequence of the Semail ophiolite (Oman), Tectonophysics 151: 199–222.

    Google Scholar 

  • Nehlig, P. and Juteau, T., 1988b, Deep crustal seawater penetration and circulation at oceanic ridges: evidence from the Oman ophiolite, Marine Geology 84: 209–228.

    Google Scholar 

  • Nehlig, P., Watremez, P. and Juteau, T., 1990, Geometry of the ocean ridges hydrothermal circulation: the example of the Semail Ophiolite, Oman, In C. Xenophontos and J.G. Malpas (ed.), Proceedings of theTroodos 87, Ophiolites and Oceanic Lithosphere Symposium, Geological Survey Dept of Cyprus, Nicosia, pp. 415–431.

    Google Scholar 

  • Nehlig, P., Juteau, T., Bendel, V. and Cotten, J., 1994, The root zones of oceanic hydrothermal systems: constraints from the Semail ophiolite (Oman), J. Geophys. Res. 99: 4703–4713.

    Google Scholar 

  • Nicolas, A., 1989, Structures of ophiolites and dynamics of oceanic lithosphere, Kluwer Acad. Publ., pp. 367.

  • Nicolas, A. and Boudier, F., 1991, Rooting of the sheeted dyke complex in the Oman ophiolite, In Ophiolite genesis and evolution of the oceanic lithosphere, Peters, Tj. et al. (eds), Ministry of petroleum and Minerals, Sultanate of Oman, pp. 39–54.

    Google Scholar 

  • Nicolas, A., Reuber, I. and Benn, K., 1988, A new magma chamber model based on structural studies in the Oman ophiolite, Tectonophysics 151: 87–105.

    Google Scholar 

  • Nicolas, A., Boudier, F., Ildefonse, B. and Ball, E., 2000, Accretion of Oman and United Arab Emirates ophiolite – Discussion of a new structural map 000: 000–000 (this issue).

    Google Scholar 

  • O'Neil, J.R. and Adami, L.H., 1969, The oxygen isotope partition function ratio of water and the structure of liquid water, J. Phys. Chem. 73: 1553–1558.

    Google Scholar 

  • Pallister, J.S. and Hopson, C.A., 1981, Samail ophiolite plutonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber, J. Geophys. Res. 86: 2593–2644.

    Google Scholar 

  • Pflumio, C., 1991, Evidences for polyphased oceanic alteration of the extrusive sequence of the Semail ophiolite from the Salahi Block (Northern Oman), In Tj. Peters et al. (eds) Ophiolite genesis and evolution of the oceanic lithosphere, Ministry of petroleum and Minerals, Sultanate of Oman, pp. 313–351.

    Google Scholar 

  • Ramboz, C., 1979, A fluid inclusion study of the copper mineralization in the south-west Tintic District (Utah), Bull. Soc. Fr. Mineral. 102: 622–632.

    Google Scholar 

  • Ramboz, C., Oudin, E. and Thisse Y., 1988, Geyser-type discharge at the bottom of the Atlantis II Deep (Red Sea): evidence from fluid inclusions in epigenetic anhydrite, Canad. Mineral. 26: 765–786.

    Google Scholar 

  • Regba, M., Agrinier, P., Pflumio, C. and Loubet, M., 1991, A geochemical study of a fossil oceanic hydrothermal discharge zone in the Oman ophiolite (Zuha sulphide prospect): evidence for a polyphased hydrothermal history, In Tj Peters et al. (eds), Ophiolite genesis and evolution of the oceanic lithosphere, Ministry of petroleum and Minerals, Sultanate of Oman, pp. 353–384.

    Google Scholar 

  • Reuber, I., Nehlig, P. and Juteau, T., 1991, Evidence of a fossil off-axis mantle diapir, deduced from crustal structures in the Haylayn Block (Samail Nappe, Oman), J. Geodyn. 13: 253–278.

    Google Scholar 

  • Richardson, C.J., Cann, J.R., Richards, H.G. and Cowan J.G., 1987, Metal-depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus, Earth Planet. Sci. Lett. 84: 243–253.

    Google Scholar 

  • Roedder, E., 1984, Fluid inclusions. Reviews in Mineralogy, 12, Mineralogical Association of America, pp. 644.

    Google Scholar 

  • Roedder, E., 1992, Fluid inclusion evidence for immiscibility in magmatic differentiation, Geochim. Cosmochim Acta 56: 5–20.

    Google Scholar 

  • Rosencrantz, E., 1983, The structure of sheeted dykes and associated rocks in North Arm Massif, Bay of Islands ophiolite complex, and the extrusive process at oceanic spreading centers, Can. J. Earth Sci. 20: 787–801.

    Google Scholar 

  • Rothery, D.A., 1983, The base of the sheeted dyke complex, Oman Ophiolite: implications for magma chambers at oceanic spreading axes, J. geol. Soc. London 140: 287–296.

    Google Scholar 

  • Ryan, C.G., Cousens, D.R., Heinrich, C.A., Griffin, W.L., Sie, S.H. and Mernagh, T.P., 1991, Quantitative PIXE microanalysis of fluid inclusions based on a layered yield model, Nucl. Instr. and Meth. B54: 292–297.

    Google Scholar 

  • Ryan, C.G., Heinrich, C.A. and Mernagh, T.P., 1993, PIXE microanalysis of fluid inclusions and its application to study ore metal sgregation between magmatic brine and vapour, Nucl. Instr. and Meth. B77: 463–471.

    Google Scholar 

  • Scott, S.D., 1997, Chemistry and physics of submarine hydrothermal systems. In H.L. Barnes (ed.), Geochemistry of hydrothermal ore deposits, 3rd ed., Chapt. 16, pp. 797–875.

  • Sleep, N.H., 1991, Hydrothermal circulation, anhydrite precipitation, and thermal structure at Ridge axes, J. Geophys. Res. 96: 2735–2787.

    Google Scholar 

  • Spulber, S.D., and Rutherford, M.J., 1983, The origin of rhyolite and plagiogranite in oceanic crust: An experimental study, J. Petrol. 24: 1–25.

    Google Scholar 

  • Sterner, S.M. and Bodnar, R.J., 1984, Synthetic fluid inclusions in natural quartz. I: Compositional types synthetized and applications to experimental geochemistry, Geochim. Cosmochim. Acta 48: 2659–2668.

    Google Scholar 

  • Ulrich, T., Günther, D. and Heinrich, C.A., 1999, Gold concentrations of magmatic brines and the metal-budget of porphyry copper deposits, Nature 399: 676–679.

    Google Scholar 

  • Vanko, D.A., 1986, High chlorine amphiboles from oceanic rocks: product of highly saline hydothermal fluids? Am. Mineral. 71: 51–59.

    Google Scholar 

  • Vityk, M.O., Krouse, H.R. and Demihov, Y.N., 1993. Preservation of δ18O values of fluid inclusion water in quartz over geological time in an epithermal environment: Beregovo deposit, Transcarpathia, Ukraine, Earth Planet. Sci. Lett. 119: 561–568.

    Google Scholar 

  • Volfinger, M., Choï, C.G., Ramboz, C., Aïssa, M. and Edon, M., 1997, Tracing fossil and present day fluids in rocks: application of the nuclear microprobe, Nucl. Instr. And Meth. B130: 692–699.

    Google Scholar 

  • Von Damm, K.L., 1988, Systematics and postulated controls on submarine hydrothermal solution chemistry, J. Geophys. Res. 93: 4551–4561.

    Google Scholar 

  • Yang, K. and Scott, S.D., 1996, Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system, Nature 383: 420–423.

    Google Scholar 

  • Zheng, Y.F., 1993a Calculation of oxygen isotope fractionation in anhydrous silicate minerals, Geochim. Cosmochim. Acta 57: 1079–1091.

    Google Scholar 

  • Zheng, Y.F., 1993b. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates, Earth Planet. Sci. Lett. 120: 247–263.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juteau, T., Manac'h, G., Moreau, O. et al. The high temperature reaction zone of the Oman ophiolite: new field data, microthermometry of fluid inclusions, PIXE analyses and oxygen isotopic ratios. Marine Geophysical Researches 21, 351–385 (2000). https://doi.org/10.1023/A:1026798811446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026798811446

Navigation