Skip to main content
Log in

Co-localization of receptor and transducer proteins in the glycosphingolipid-enriched, low density, detergent-insoluble membrane fraction of sea urchin sperm

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The low density, detergent-insoluble membrane fraction (LD-DIM), where gangliosides are likely to be highly enriched, was prepared from sperm of two sea urchin species, Hemicentrotus pulcherrimus and Strongylocentrotus purpuratus. Immunoblotting showed the presence in the LD-DIM of two receptors for egg ligands, a glycosylphosphatidylinositol (GPI)-anchored protein, and four proteins which may be involved in signal transduction. Co-immunoprecipitation revealed that at least three proteins, the speract receptor, the 63[emsp4 ]kDa GPI-anchored protein and the α subunit of a heterotrimeric Gs protein, are localized in the LD-DIM. This suggests that the LD-DIM fraction may be a membrane microdomain for speract–speract receptor interaction, as well as the subsequent signal transduction pathway involved in induction of sperm respiration, motility and possibly the acrosome reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Parton RG, Simon K, Science 269, 1398–9 (1995).

    Google Scholar 

  2. Simon K, Ikonen E, Nature 387, 569–72 (1997).

    Google Scholar 

  3. Brown DA, Rose JK, Cell 68, 533–44 (1992).

    Google Scholar 

  4. Verkade P, Simon K, Histochem Cell Biol 108, 211–20 (1997).

    Google Scholar 

  5. Brawn DA, London E, Biochem Biophys Res Commun 240, 1–7 (1997).

    Google Scholar 

  6. Kenworthy AK, Edidin M, J Cell Biol 142, 69–84 (1998).

    Google Scholar 

  7. Fiedler K, Kobayashi T, Kurzchalia TV, Simon K, Biochemistry 32, 6365–73 (1993).

    Google Scholar 

  8. Lisanti MP, Scherer PE, Vidugiriene J, Tang Z, Hermanowski-Vosatka A, Tu YH, Cook RF, Sargiacomo M, J Cell Biol 126, 111–26 (1994).

    Google Scholar 

  9. Rogers W, Rose JK, J Cell Biol 135, 1515–23 (1996).

    Google Scholar 

  10. Yamamura S, Handa K, Hakomori S, Biochem Biophys Res Commun 236, 218–22 (1997).

    Google Scholar 

  11. Kasahara K, Watanabe Y, Yamamoto T, Sanai Y, J Biol Chem 272, 29947–53 (1997).

    Google Scholar 

  12. Maekawa S, Sato C, Kitajima K, Funatsu N, Kumanogoh H, Sokawa Y, J Biol Chem 274, 21369–74 (1999).

    Google Scholar 

  13. Manes S, Mira E, Gometz-Mouton C, Lacalle RA, Keller P, Labrador JP, Martinez-AC, EMBO J 18, 6211–20 (1999).

    Google Scholar 

  14. Harder T, Simon K, Curr Opin Cell Biol 9, 534–42 (1997).

    Google Scholar 

  15. Yu S, Withers DA, Hakomori S, J Biol Chem 273, 2517–25 (1998).

    Google Scholar 

  16. Iwabuchi K, Yamamura S, Prinetti A, Handa K, Hakomori S, J Biol Chem 273, 9130–8 (1998).

    Google Scholar 

  17. Iwabuchi K, Handa K, Hakomori S, J Biol Chem 273, 33766–73 (1998).

    Google Scholar 

  18. Prinetti A, Iwabuchi K, Hakomori S, J Biol Chem 274, 20916–24 (1999).

    Google Scholar 

  19. Hoshi M, Nagai Y, Biochim Biophys Acta 388, 152–62 (1975).

    Google Scholar 

  20. Kotchetokov NK, Smirnova GP, Chekareva NV, Biochim Biophys Acta 424, 274–83 (1976).

    Google Scholar 

  21. Yu S, Kitajima K, Inoue S, Khoo KH, Morris HR, Dell A, Inoue Y, Glycobiology 5, 207–18 (1995).

    Google Scholar 

  22. Ijuin T, Kitajima K, Yu S, Kitazume S, Inoue S, Haslam SM, Morris HR, Dell A, Inoue Y, Glycoconjugates J 13, 401–13 (1996).

    Google Scholar 

  23. Tanphaichitr N, Smith J, Mongkolsirikieart S, Gradil C, Lingwood C, Dev Biol 156, 165–75 (1993).

    Google Scholar 

  24. Ohta K, Sato C, Matsuda T, Toriyama M, Lennarz WJ, Kitajima K, Biochem Biophys Res Commun 258, 616–23 (1999).

    Google Scholar 

  25. Sato C, Kitajima K, Inoue S, Seki T, Troy FA II, Inoue Y, J Biol Chem 270, 18923–8 (1995).

    Google Scholar 

  26. Podell SB, Vacquier VD, Exp Cell Res 155, 467–76 (1984).

    Google Scholar 

  27. Trimmer JS, Trowbridge IS, Vacquier VD, Cell 40, 697–703 (1985).

    Google Scholar 

  28. Nishioka D, Trimmer JS, Poccia D, Vacquier VD, Exp Cell Res 173, 606–16 (1987).

    Google Scholar 

  29. Vacquier VD, Exp Cell Res 153, 281–6 (1984).

    Google Scholar 

  30. Bookbinder LH, Moy GW, Vacquier VD, J Cell Biol 111, 1859–66 (1990).

    Google Scholar 

  31. Shimizu T, Takeda K, Furuya H, Hoshino K, Nomura K, Suzuki N, Zool Sci 13, 285–94 (1996).

    Google Scholar 

  32. Kohler G, Milstein C, Nature 256, 495–7 (1975).

    Google Scholar 

  33. Kohler G, Milstein C, Eur J Immunol 6, 511–9 (1976).

    Google Scholar 

  34. Sato C, Kitajima K, Inoue S, Inoue Y, J Biol Chem 273, 2575–82 (1998).

    Google Scholar 

  35. Svennerholm L, Biochim Biophys Acta 24, 604–11 (1957).

    Google Scholar 

  36. Laemmli UK, Nature 227, 680–5 (1970).

    Google Scholar 

  37. Cuéllar-Mata P, Marténez-Cadena G, Castellano LE, Aldana-Veloz G, Novoa-Marténez G, Vargas I, Darszon A, García-Soto J, Develop Growth Differ 37, 173–81 (1995).

    Google Scholar 

  38. Nagai Y, Hoshi M, Biochim Biophys Acta 388, 146–51 (1975).

    Google Scholar 

  39. Parton RG, Curr Opin Cell Biol 8, 542–8 (1996).

    Google Scholar 

  40. Hooper NM, Mol Membr Biol 16, 145–56 (1999).

    Google Scholar 

  41. Keller P, Simons K, J Cell Biol 140, 1357–67 (1998).

    Google Scholar 

  42. Dangott LJ, Garbers DL, J Biol Chem 259, 13712–6 (1984).

    Google Scholar 

  43. Shimizu T, Yoshino K, Suzuki N, Develop Growth Differ 36, 209–21 (1994).

    Google Scholar 

  44. Suzuki N, in The male gamete: from basic science to clinical applications (Gagnon C ed), Cache River Press (1999), pp 258–65.

  45. Osawa T, Nagai Y, Biochim Biophys Acta 389, 69–83 (1975).

    Google Scholar 

  46. Ohta K, Sato C, Matsuda T, Hirohashi N, Lennarz WJ, Kitajima, K, Glycoconjugate J 16, S63 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohta, K., Sato, C., Matsuda, T. et al. Co-localization of receptor and transducer proteins in the glycosphingolipid-enriched, low density, detergent-insoluble membrane fraction of sea urchin sperm. Glycoconj J 17, 205–214 (2000). https://doi.org/10.1023/A:1026589223811

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026589223811

Navigation