Skip to main content
Log in

Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The fusion of HIV-1 with the plasma membrane of CD4+ cells is triggered by the interaction of HIV-1 surface envelope glycoprotein gp120 with the CD4 receptor, and requires coreceptors (CCR5 and CXCR4). Recent advances in the study of HIV-1 entry into CD4+ cells suggest that glycosphingolipids (GSL) may also participate in the fusion process. GSL are organized in functional microdomains which are associated with specific membrane proteins such as CD4. GSL-enriched microdomains were purified from human lymphocytes and reconstituted as a monomolecular film at the air–water interface of a Langmuir film balance. Surface pressure measurements allowed to characterize the sequential interaction of GSL with CD4 and with gp120. Using this approach, we identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main lymphocyte GSL recognized by gp120. In both cases, the interaction was saturable and dramatically increased by CD4. We propose that GSL microdomains behave as moving platforms allowing the recruitment of HIV-1 coreceptors after the initial interaction between the viral particle and CD4. According to this model, the GSL microdomain may : i) stabilize the attachment of the virus with the cell surface through multiple low affinity interactions between the V3 domain of gp120 and the carbohydrate moiety of GSL, and ii) convey the virus to an appropriate coreceptor by moving freely in the outer leaflet of the plasma membrane. This model can be extrapolated to all envelope viruses (e.g. influenza virus) that use cell surface GSL of the host cells as receptors or coreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binley J, Moore JP, Nature 387, 346–8 (1997).

    Google Scholar 

  2. Clapham PR, Weiss RA, Nature 388, 230–1 (1997).

    Google Scholar 

  3. Weissenhorn W, Dessen A, Calder LJ, Harrison SC, Skehel JJ, Wiley DC, Mol Membrane Biol 16, 3–9 (1999).

    Google Scholar 

  4. Haywood AM, J Virol 68, 1–5 (1994).

    Google Scholar 

  5. Hakomori SI, Igarashi Y, J Biochem 118, 1091–103 (1995).

    Google Scholar 

  6. Simons K, Ikonen E, Nature 387, 569–72 (1997).

    Google Scholar 

  7. Brown RE, J Cell Sci 111, 1–9 (1998).

    Google Scholar 

  8. Fantini J, Tamalet C, Hammache D, Tourrès C, Duclos N, Yahi N, J Acquir Immune Defic Syndr Hum Retrovirol 19, 221–9 (1998).

    Google Scholar 

  9. Brown RE, Rose J, Cell 68, 533–44 (1992).

    Google Scholar 

  10. Sorice M, Parolini I, Sansolini T, Garofalo T, Dolo V, Sargiacomo M, Tai T, Peschle C, Torrisi MR, Pavan A, J Lipid Res 38, 969–80 (1997).

    Google Scholar 

  11. Millan J, Cerny J, Horejsi V, Alonso MA, Tissue Antigens 53, 33–40 (1999).

    Google Scholar 

  12. Hammache D, Yahi N, Piéroni G, Ariasi F, Tamalet C, Fantini J, Biochem Biophys Res Commun 246, 117–22 (1998).

    Google Scholar 

  13. Maggio B, Prog Biophys Mol Biol 62, 55–117 (1994).

    Google Scholar 

  14. Hammache D, Yahi N, Maresca M, Piéroni G, Fantini J, J Virol 73, 5244–8 (1999).

    Google Scholar 

  15. Delézay O, Hammache D, Fantini J, Yahi N, Biochemistry 35, 15663–71 (1996).

    Google Scholar 

  16. Hammache D, Piéroni G, Yahi N, Delézay O, Koch N, Lafont H, Tamalet C, Fantini J, J Biol Chem 273, 5967–71 (1998).

    Google Scholar 

  17. Tamma SL, Sundaram SK, Lev M, Coico RF, Biochem Biophys Res Commun 220, 916–21 (1996).

    Google Scholar 

  18. Puri A, Hug P, Munoz-Barroso I, Blumenthal R, Biochem Biophys Res Commun 242, 219–25 (1998).

    Google Scholar 

  19. Puri A, Hug P, Jernigan K, Barchi J, Kim HY, Hamilton J, Wiles J, Murray GJ, Brady RO, Blumenthal R, Proc Natl Acad Sci USA 95, 14435–40 (1998).

    Google Scholar 

  20. Puri A, Hug P, Jernigan K, Rose P, Blumenthal R, Biosci Rep 19, 317–25 (1999).

    Google Scholar 

  21. Fantini J, Hammache D, Delézay O, Yahi N, André-Barrès C, Rico-Lattes I, Lattes A, J Biol Chem 272, 7245–52 (1997).

    Google Scholar 

  22. Fantini J, Meth Enzymol 311, 627–38 (2000).

    Google Scholar 

  23. Lapham CK, Ouyang J, Chandrasekhar B, Nguyen NY, Dimitrov DS, Golding H, Science 274, 602–5 (1996).

    Google Scholar 

  24. Xiao X, Wu L, Stantchev TS, Fang YR, Ugolini S, Chen H, Shen Z, Riley JL, Broder CC, Sattentau QJ, Dimitrov DS, Proc Natl Acad Sci USA 96, 7496–501 (1999).

    Google Scholar 

  25. Haywood AM, Boyer BP, Biochemistry 21, 6041–6 (1982).

    Google Scholar 

  26. Long D, Berson JF, Cook DG, Doms RW, J Virol 68, 5890–8 (1994).

    Google Scholar 

  27. Fantini J, Hammache D, Delézay O, Piéroni G, Tamalet C, Yahi N, Virology 246, 211–20 (1998).

    Google Scholar 

  28. Haywood AM, In Cell Model Membrane Interactions (Ohki S, ed.) Plenum Press, NY, (1991), pp. 149–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fantini, J., Hammache, D., Piéroni, G. et al. Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion. Glycoconj J 17, 199–204 (2000). https://doi.org/10.1023/A:1026537122903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026537122903

Navigation