Skip to main content
Log in

Effect of Side Groups on the Conformation of a Series of Polysiloxanes in Solution

  • Published:
Journal of Inorganic and Organometallic Polymers Aims and scope Submit manuscript

Abstract

The molecular conformation has been obtained for polysiloxane chains in which the pairs of substituents bonded at the silicon atom are CH3, CH3; C2H5, C2H5; CH3, C6H13; CH3, C16H33; and CH3, C6H5. Polysiloxanes dissolved in toluene and benzene were studied using a coupled system: Gel Permeation Chromatography/Light Scattering (GPC/LS). Attention was focused on the influence in the molecular conformation of the quality of the solvent and the type of substituent on the main chain. The results obtained were strongly dependent on the side group size and flexibility. Poly(dimethylsiloxane) samples of 273,400 and 97,600 daltons showed a semi-flexible conformation, but the sample of relatively low molecular weight (36×103 daltons) exhibited a slope of 0.6 in good solvents; i.e., demonstrated the behavior of dilute (non-overlapping) coils in a good solvent. With respect to the poly(diethylsiloxane), the source of the coil's expansion is the high mobility of the side chains. Poly(methylphenylsiloxane) exhibits a rigid rod conformation in both solvents. The orientation of the phenyl groups and the attractive interaction between these groups dominate the polysiloxane chain behavior in good solvents. For these polysiloxanes, the expansion factor value is analyzed and the influence of solvent on the polymer's unperturbed dimensions is discussed. Poly(methylhexylsiloxane) and poly(methylhexadecylsiloxane) show a spherical conformation in both solvents. This conformation may arise from strong interactions between the bulky side groups and the main chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kala, E. D. Lykissa, and M. Lebovitz, Anal. Chem. 69, 1267(1997).

    Google Scholar 

  2. B. Arkles, CHEMTECH 13, 542(1983).

    Google Scholar 

  3. X. Dong, A. Proctor, and D. M. Hercules, Macromolecules 30, 63(1997).

    Google Scholar 

  4. Y. Kawami and I. Imae, Macromol. Chem. Phys. 200, 1245(1999).

    Google Scholar 

  5. J. T. Wescott and S. Hanna, Comput. Theor. Polym. Sci. 9, 307(1999).

    Google Scholar 

  6. J. E. Mark, in Silicon-Based Polymer Science, J. M. Zeigler, F. W. G. Fearon, eds., Advances Chemistry Series, Vol. 224 (American Chemical Society, Washington, DC, 1990), Chaps. 2 and 7.

    Google Scholar 

  7. P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, NY, 1969).

    Google Scholar 

  8. J. E. Mark, Macromolecules 11, 627(1978).

    Google Scholar 

  9. J. S. Higgins, K. Dogson, and J. A. Semlyen, Polymer 20, 553(1979).

    Google Scholar 

  10. C. J. C. Edwards, R. F. T. Stepto, and J. A. Semlyen, Polymer 23, 869(1982).

    Google Scholar 

  11. M. B. Huglin and M. B. Sokro, Polymer 21, 651(1980).

    Google Scholar 

  12. I. Bahar, I. Zú~niga, R. Dodge, and W. C. Mattice, Macromolecules 24, 2986(1991).

    Google Scholar 

  13. K. J. Miller, J. Grebowicz, J. P. Wesson, and B. Wunderlich, Macromolecules 23, 849(1990).

    Google Scholar 

  14. C. Salom, J. J. Freire, and I. Hernández-Fuentes, Polymer 30, 615(1989).

    Google Scholar 

  15. J. A. Villegas, R. Olayo, J. Cervantes, J. Inorg. Organomet. Polym. 7, 51(1997).

    Google Scholar 

  16. D. J. Coumou, J. Colloid Sci. 15, 408(1996).

    Google Scholar 

  17. V. Crescenzi and P. J. Flory, J. Am. Chem. Soc. 86, 141(1964).

    Google Scholar 

  18. H. Tai and J. W. Kenneth, Macromolecules 29, 3991(1996).

    Google Scholar 

  19. T. Yamada, H. Kogama, T. Yoshizaki, Y. Einaga, and H. Yamakawa, Macromolecules 26, 2566(1993).

    Google Scholar 

  20. J. E. Mark, H. R. Allcock, and R. West, Inorganic Polymers (Prentice-Hall, Englewood Cliffs, NJ, 1992).

    Google Scholar 

  21. W. S. Brey, in Silicon Compounds: Register and Review, R. Anderson, B. Arkles, G. L. Larson, eds. (Petrarch Systems, Bristol, PA, 1987).

    Google Scholar 

  22. M. B. Huglin, Light Scattering from Polymer Solutions (Academic Press, New York, NY, 1972).

    Google Scholar 

  23. P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).

    Google Scholar 

  24. K. Horita, N. Sawatari, T. Yoshizaki, Y. Einaga, and H. Yamakawa, Macromolecules 28, 4455(1995).

    Google Scholar 

  25. S. J. Clarson, J. A. Semlyen, J. Horská, and R. F. T. Stepto, Polym. Comun. 27, 31(1986).

    Google Scholar 

  26. G. Beaucage, S. Sukumaran, S. J. Clarson, M. S. Kent, and D. W. Schaefer, Macromolecules 29, 8349(1996).

    Google Scholar 

  27. A. Villegas, R. Olayo, and J. Cervantes, J. Inorg. Organomet. Polym. 8, 135(1998).

    Google Scholar 

  28. C. Salom, A. Horta, I. Hernández-Fuentes, and I. F. Piérola, Macromolecules 20, 696(1987).

    Google Scholar 

  29. A. Horta, J. F. Piérola, A. Rubio, and J. J. Freire, Macromolecules 24, 3121(1991).

    Google Scholar 

  30. S. J. Clarson, K. Dogson, and J. A. Semlyen, Polymer 28, 189(1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Villegas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villegas, J.A., Olayo, R. & Cervantes, J. Effect of Side Groups on the Conformation of a Series of Polysiloxanes in Solution. Journal of Inorganic and Organometallic Polymers 13, 205–222 (2003). https://doi.org/10.1023/A:1026191926742

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026191926742

Navigation