Skip to main content
Log in

Post-Ischemic Treatment with Dipyruvyl-Acetyl-Glycerol Decreases Myocardial Infarct Size in the Pig

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The beneficial effects of pyruvate in organ reperfusion injury have been documented, however the therapeutic use of pyruvate has been hindered by the lack of an appropriate delivery method. Pyruvic acid is unstable and high rates of sodium pyruvate infusion are toxic. Dipyruvyl-acetyl-glycerol (DPAG) ester was developed as a novel method for intravenous pyruvate delivery at a high rate without sodium overload. We tested the ability of DPAG to reduce myocardial infarct size when administered after severe myocardial ischemia in an anesthetized open-chest pig model of ischemia-reperfusion injury. Ischemia was induced by total occlusion of the distal 2/3 of the left anterior descending coronary artery for one hour, followed by two hours of reperfusion. Animals were either untreated (n = 7), or treated with intravenous DPAG (8.0 mg/kg−1 · min−1, n = 8) during the two hours of reperfusion. Infarct size was measured on blinded samples using tetrazolium staining. The DPAG treated group had elevated pyruvate levels (0.82 ± 0.07 mM) and reduced infarct size (20.1 ± 4.2% of the volume at risk, compared to 30.8 ± 4.6% in the untreated animals (p < 0.05)), with no difference in blood pressure or heart rate between groups. In conclusion, an intravenous infusion of DPAG safely increases arterial pyruvate concentration and reduces myocardial infarct size following myocardial ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liedtke AJ, Nellis SH, Neely JR, Hughes HC. Effects of treatment with pyruvate and Tris in experimental myocardial ischemia. Cir Res 1976;39:378-387.

    Google Scholar 

  2. Liedtke AJ, Nellis SH. Effects of buffered pyruvate on regional cardiac function in moderate, short-term ischemia in swine heart. Circ Res 1978;43:189-199.

    Google Scholar 

  3. Bünger R, Swindall B, Brodie D, Zdunek D, Stiegler H, Walter G. Pyruvate attenuation of hypoxia damage in isolated working guinea-pig heart. J Molec Cell Cardiol 1986;18:423-438.

    Google Scholar 

  4. Bünger R, Mallet RT, Hartman DA. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur J Biochem 1989;180:221-233.

    Google Scholar 

  5. Mallet RT. Pyruvate: Metabolic protector of cardiac performance. Experimental Biol Med 2000;223:136-148.

    Google Scholar 

  6. Mentzer RM Jr, Van Wylen DG, Sodhi J, et al. Effect of pyruvate on regional ventricular function in normal and stunned myocardium. Annals of Surgery 1989;209:629-633.

    Google Scholar 

  7. Zhou Z, Lasley RD, Hegge JO, Bünger R, Mentzer RM Jr. Myocardial stunning: A therapeutic conundrum. J Thorac Cardiovasc Surg 1995;110:1391-1400.

    Google Scholar 

  8. Regitz V, Azumi T, Stephan H, Naujocks S, Schaper W. Biochemical mechanism of infarct size reduction by pyruvate. Cardiovas Res 1981;15:652-658.

    Google Scholar 

  9. Gutterman DD, Chilian WH, Eastham CL, Inou T, White CW, Marcus ML. Failure of pyruvate to salvage myocardium after prolonged ischemia. Am J Physiol 1986;250:H114-H120.

    Google Scholar 

  10. Mongan PD, Fontana JL, Chen R, Bünger R. Intravenous pyruvate prolongs survival during hemorrhagic shock in swine. Am J Physiol 1999;277:H2253-H2263.

    Google Scholar 

  11. Mongan PD, Capacchione J, Fontana JL, West S, Bünger R. Pyruvate improves cerebral metabolism during hemorrhagic shock. Am J Physiol (Heart Circ) 2001;281:H854-H864.

    Google Scholar 

  12. Martin BJ, Lasley RD, Mentzer RM. Infarct size reduction with the nucleoside transport inhibitor R-75231 in swine. Am J Physiol (Heart Circ) 1997;272:H1857-H1865.

    Google Scholar 

  13. Mallet RT, Sun J. Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energetics. Cardiovasc Res 1999;42:149-161.

    Google Scholar 

  14. Panchal AR, Comte B, Huang H, et al. Partitioning of pyruvate between oxidation and anaplerosis in swine heart. Am J Physiol (Heart Circ) 2000;279:H2390-H2398.

    Google Scholar 

  15. Panchal AR, Comte B, Huang H, et al. Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. Am J Physiol (Heart Circ) 2001;281:H1613-H1620.

    Google Scholar 

  16. Suemune H, Mizuhara Y, Akita H, Sakai K. Enzymatic synthesis of 2,3-O-isopropylidene-sn-glycerol, a chiral building block for platelet-activating factor. Chem Pharm Bull 1986;34:3440-3444.

    Google Scholar 

  17. Ottenheijm HCJ, De Man JHM. Synthesis of ?-keto acid chlorides. Synthesis 1975:163-164.

  18. Hall JL, Stanley WC, Lopaschuk GD, et al. Impaired pyruvate oxidation but normal glucose uptake in diabetic swine myocardium during dobutamine-induced work. Am J Physiol (Heart Circ) 1996;271:H2320-H2329.

    Google Scholar 

  19. Stanley WC, Hernandez LA, Spires DA, Bringas J, Wallace S, McCormack JG. Pyruvate dehydrogenase activity and malonyl-CoA levels in normal and ischemic swine myocardium: Effects of dichloroacetate. J Mol Cell Cardiol 1996;29:905-914.

    Google Scholar 

  20. Hermann HP, Peike B, Schwarzuller E, Jeul J, Just H, Hasenfuss G. Haemodynamic effects of intracoronary pyruvate in patients with congestive heart failure:Anopen study. Lancet 1999;353:1321-1323.

    Google Scholar 

  21. Tejero-Taldo MI, Caffrey JL, Sun J, Mallet RT. Antioxidant properties of pyruvate mediate its potentiation of ?-adrenergic inotropism in stunned myocardium. J Mol Cell Cardiol 1999;31:1863-1872.

    Google Scholar 

  22. Bassenge EB, Sommer O, Schwemmer M, Bünger R. Antioxidant pyruvate inhibits cardiac formation of reactive oxygen species through changes in redox state. AmJ Physiol (Heart Circ) 2000;279:H2431-H2438.

    Google Scholar 

  23. Clough D, Bünger R. Protection by pyruvate against inhibition of Na+-K+-ATPase by a free radical generating system containing t-butylhydroperoxide. Life Sci 1995;57:931-943.

    Google Scholar 

  24. Ramakrishnan N, Chen R, McClain DE, Bünger R. Pyruvate prevents hydrogen peroxide-induced apoptosis. Free Radical Res 1998;29:283-2895.

    Google Scholar 

  25. Bolli R. Causative role of oxyradicals in myocardial stunning: A proven hypothesis. A brief review of the evidence demonstrating a major role of reactive oxygen species in several forms of postischemic dysfunction. Basic Res Cardiol 1998;93:156-162.

    Google Scholar 

  26. Bolli R. Oxygen-derived free radicals and myocardial reperfusion injury: An overview. Cardiovasc Drugs Therapy 1991;5(Suppl 2):249-268.

    Google Scholar 

  27. Jeroudi MO, Hartley CJ, Bolli R. Myocardial reperfusion injury: Role of oxygen radicals and potential therapy with antioxidants. Amer J Cardiol 1994;73:2B-7B.

    Google Scholar 

  28. Ochiai K, Zhang J, Gong G, et al. Effects of augmented delivery of pyruvate on myocardial high-energy phosphate metabolism at a high workstate. Am J Physiol (Heart Circ) 2001;281:H1823-H1832.

    Google Scholar 

  29. Park J-W, Chun Y-S, Kim M-S, Park Y-C, Kwak SJ, Park SC. Metabolic modulation of cellular redox potential can improve cardiac recovery from ischemia-reperfusion injury. Int J Cardiol 1998;65:139-147.

    Google Scholar 

  30. Martin BJ, McClanahan TB, Van Wylen DG, Gallagher KP. Effects of ischemia, preconditioning, and adenosine deaminase inhibition on interstitial adenosine levels and infarct size. Ann Thorac Surg 2000;69:84-89.

    Google Scholar 

  31. Bianchi C, Wakiyama H, Faro R, et al. Anovel peroxynitrite decomposer catalyst (FP-15) reduces myocardial infarct size in an in vivo peroxynitrite decomposer and acute ischemiareperfusion in pigs. Ann Thorac Surg 2002;74:1201-1207.

    Google Scholar 

  32. Duncker DJ, Klassen CL, Ishibashi Y, Herrlinger SH, Pavek TJ, Bache RJ. Effect of temperature on myocardial infarction in swine. Am J Physiol 1996;270:H1189-H1199.

    Google Scholar 

  33. Meng H, McVey M, Perrone M, Clark KL. Intravenous AMP 579, a novel adenosine A(1)/A(2a) receptor agonist, induces a delayed protection against myocardial infarction in minipig. Eur J Pharmacol 2000;387:101-105.

    Google Scholar 

  34. Hohlfeld T, Meyer-Kirchrath J, Vogel YC, Schror K. Reduction of infarct size by selective stimulation of prostaglandin EP(3)receptors in the reperfused ischemic pig heart. J Mol Cell Cardiol 1998;32:1787-1786.

    Google Scholar 

  35. Padilla F, Garcia-Dorado D, Agullo L, et al. Intravenous administration of the natriuretic peptide urodilatin at low doses during coronary reperfusion limits infarct size in anesthetized pigs. Cardiovasc Res 2001;51:592-600.

    Google Scholar 

  36. Schwarz ER, Fleischhauer J, Montino H, et al. Infarct size reduction by ischemic preconditioning is a monophasic, short-lived phenomenon in anesthetized pigs. J Cardiovasc Pharmacol Ther 1998;3:63-70.

    Google Scholar 

  37. Sjaastad I, Grund F, Ilebekk A. Effects on infarct size and on arrhythmias by controlling reflow after myocardial ischaemia in pigs. J Invasive Cardiol 2002;14:160-166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanley, W.C., Kivilo, K.M., Panchal, A.R. et al. Post-Ischemic Treatment with Dipyruvyl-Acetyl-Glycerol Decreases Myocardial Infarct Size in the Pig. Cardiovasc Drugs Ther 17, 209–216 (2003). https://doi.org/10.1023/A:1026163921643

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026163921643

Navigation