Skip to main content
Log in

Size Tunable Synthesis of Highly Crystalline BaTiO3 Nanoparticles using Salt-Assisted Spray Pyrolysis

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Highly crystalline, dense BaTiO3 nanoparticles in a size range from 30 to 360nm with a narrow size distribution (σg = 1.2–1.4) were prepared at various synthesis temperatures using a salt-assisted spray pyrolysis (SASP) method without the need for post-annealing. The effect of synthesis temperature on particle size, crystallinity and surface morphology of the nanoparticles were characterized by X-ray diffraction and scanning/transmission electron microscopy. The nature of the crystalline structure was analyzed by Rietveld refinement and Raman spectroscopy. The particle size decreased with decreasing operation temperature. The crystal phase was transformed from tetragonal to cubic at a particles size of about 50nm at room temperature. SASP can be used to produce high weight fraction of tetragonal BaTiO3 nanoparticles down to 64nm in a single step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhtar M.K., S.E. Pratsinis & S.V.R. Mastrangelo, 1994. J. Mater. Res. 9, 1241.

    Google Scholar 

  • Arlt G., D. Hennings & G. Dewith, 1985. J. Appl. Phys. 58, 1619.

    Google Scholar 

  • Begg B.D., E.R. Vance & J. Nowotny, 1994. J. Am. Ceram. Soc. 77, 3186.

    Google Scholar 

  • Buttner R.H. & E.N. Maslen, 1992. Acta Crystallogr. Sect. B - Struct. Commun. 48, 764.

    Google Scholar 

  • Cheary R.W. & A. Coelho, 1992. J. Appl. Crystallogr., 25, 109.

    Google Scholar 

  • Dutta P.K. & J.R. Gregg, 1992. Chem. Mater. 4, 843.

    Google Scholar 

  • Gotor F.J., C. Real, M.J. Dianez & J.M. Criado, 1996. J. Solid State Chem. 123, 301.

    Google Scholar 

  • Hu M.Z.-C., V. Kurian, E.A. Payzant, C.J. Rawn & R.D. Hunt, 2000. Powder Technol. 110, 2.

    Google Scholar 

  • Ishikawa K., K. Yoshikawa & N. Okada, 1988. Phys. Rev. B: Condens. Mater. 37, 5852.

    Google Scholar 

  • Itoh Y., I.W. Lenggoro, S.E. Pratsinis & K. Okuyama, 2002. J. Mater. Res. 17, 3222.

    Google Scholar 

  • Kajiyoshi K., N. Ishizawa & M. Yoshimura, 1991. J. Am. Ceram. Soc. 74, 369.

    Google Scholar 

  • Kofler A., 1955. Monatsh. Chem., 86, 646.

    Google Scholar 

  • Kong L.B., J. Ma, R.F. Zhang & W.X. Que, 2002. J Alloys Compd. 337, 226.

    Google Scholar 

  • Li X. & W.H. Shih, 1997. J. Am. Ceram. Soc. 80, 2844.

    Google Scholar 

  • Lu S.W., B.I. Lee, Z.L. Wang & W.D. Samuels, 2000. J. Crystal Growth 219, 269.

    Google Scholar 

  • Mädler L., W.J. Stark & S.E. Pratsinis, 2002a. J. Mater. Res. 17, 1356.

    Google Scholar 

  • Mädler L., W.J. Stark & S.E. Pratsinis, 2002b. J. Appl. Phys. 92, 6537.

    Google Scholar 

  • Mädler L., W.J. Stark & S.E. Pratsinis, 2003. J. Mater. Res. 18, 115.

    Google Scholar 

  • Milosevic O.B., M.K. Mirkovic & D.P. Uskokovic, 1996. J. Am. Ceram. Soc. 79, 1720.

    Google Scholar 

  • Nonaka K., S. Hayashi, K. Okada & N. Otsuka, 1991. J. Mater. Res. 6, 1750.

    Google Scholar 

  • Ogihara T., H. Aikiyo, N. Ogata & N. Mizutani, 1999. Adv. Powder Technol. 10, 37.

    Google Scholar 

  • Perry C.H. & D.B. Hall, 1965. Phys. Rev. Lett. 15, 700.

    Google Scholar 

  • Sakabe Y., N. Wada & Y. Hamaji, 1998. J. Korean Phys. Soc. 32, s260.

    Google Scholar 

  • Schlag S. & H.F. Eidce, 1994. Solid State Comm. 91, 883.

    Google Scholar 

  • Seto T., A. Hirota, T. Fujimoto, M. Shimada & K. Okuyama, 1997. Aerosol Sci. Technol. 27, 422.

    Google Scholar 

  • Takeuchi T., K. Ado, T. Asai, H. Kageyama, T. Saito, C. Masquelier & O. Nakamura, 1994. J. Am. Ceram. Soc. 77, 1665.

    Google Scholar 

  • Uchino K., E. Sadanaga & T. Hirose, 1989. J. Am. Ceram. Soc. 72, 1555.

    Google Scholar 

  • Wang Y.G., W.L. Zhong & P.L. Zhang, 1994. Solid State Comm. 90, 329.

    Google Scholar 

  • Xu H., L. Gao & J. Guo, 2002. J. Eur. Ceram. Soc. 22, 1163.

    Google Scholar 

  • Xia B., I.W. Lenggoro & K. Okuyama, 2001. Adv. Mater. 13, 1579.

    Google Scholar 

  • Xia B., I.W. Lenggoro & K. Okuyama, 2002. Chem. Mater. 14, 2623.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikuo Okuyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, Y., Lenggoro, I.W., Okuyama, K. et al. Size Tunable Synthesis of Highly Crystalline BaTiO3 Nanoparticles using Salt-Assisted Spray Pyrolysis. Journal of Nanoparticle Research 5, 191–198 (2003). https://doi.org/10.1023/A:1025565614632

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025565614632

Navigation