Skip to main content
Log in

Electric Field Assisted Patterning of Neuronal Networks for the Study of Brain Functions

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

It is estimated that about 18 million people worldwide suffer from dementia and it is projected to increase to about 35 million by the year 2025. All types of dementia occur due to an aberration in memory retention and development, caused by malfunctioning neurons. Experimental investigation of the dynamics of neuronal networks is a fundamental step towards understanding how the nervous system works. Activity-dependant modification of synaptic strength is widely recognized as the cellular basis of learning, memory and developmental plasticity. Understanding memory formation and development thus translates to changes in the electrical activity of the neurons. To map the changes in the electrical activity, it is essential to conduct in vitro studies on individual neurons. Hence, there is an enormous need to develop novel ways for the assembly of highly controled neuronal networks. To this end, we used a 5×5 multiple microelectrode array system to spatially arrange neurons by applying a combination of DC and AC fields. We characterized the electric field distribution inside our test platform by using 2-dimensional finite element modeling (FEM) and determined the location of neurons over the electrode array as well as the expected direction of neurite growth. As the first stage in forming a neuronal network, dielectrophoretic AC fields were utilized to separate the neurons from the glial cells and to position the neurons over the electrodes. DC fields were then applied to induce directed neurite growth and achieve network formation. The neurons were obtained from 18 days old rat embryos from wild type Rattus Norvegicus. The technique of using a combination of DC and AC electric fields to achieve network formation has implications in neural engineering, elucidating a new and simpler method to develop and study neuronal networks as compared to conventional microelectrode array techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M.F. Bear, C.W. Barry, and M.A. Paradiso, Neuroscience: Exploring the Brain, p. 147 (Lippincott, Williams and Wilkins, Baltimore, MD, 2nd ed. 1999).

    Google Scholar 

  • D.W. Branch, B. Wheeler, G.J. Brewer, and B.E. Leckband, IEEE Trans Biomedical Engineering 47, 290-300 (2000).

    Google Scholar 

  • J.C. Chang, G.J. Brewer, and B.C. Wheeler, J. Biomed Microdevices 2(4), 245-300 (2000).

    Google Scholar 

  • J. Cheng, E.L. Sheldon, L. Wu, A. Uribe, L.O. Gerrue, J. Carrino, M.J. Heller, and J.P. O'Connell, Nat. Biotechnol. 16, 541-546 (1998).

    Google Scholar 

  • J.A.T. Dow, P. Clark, P.K. Connolly, A.S.G. Curtis, and C.D.W. Wilkinson, J. Cell Sci. Suppl. 8, 55-79 (1987).

    Google Scholar 

  • G. Fuhr, P. Ross, T. Muller, V. Dressler, and H. Goring, Plant Cell Physiol. 31, 975-985 (1990).

    Google Scholar 

  • P.R.C. Gascoyne and J. Vykoukal, Electrophoresis 23, 1973-1983 (2002).

    Google Scholar 

  • G.W. Gross and J.H. Lucas, J. Electrophys. Tech. 9, 55-69 (1982).

    Google Scholar 

  • G.W. Gross, IEEE Trans. Biomed. Eng. 26, 273-278 (1979).

    Google Scholar 

  • G.W. Gross, E. Rieske, G.W. Kreutzberg, and A. Meyer, Neurosci. Lett. 6, 101-106 (1977).

    Google Scholar 

  • J.A. Hammarback, S.L. Palm, L.T. Furcht, and P.C. Letourneau, J. Neurosci. Res. 13, 213-220 (1985).

    Google Scholar 

  • P.C. Heimenz, Principles of Colloid and Surface Chemistry (Marcel Dekker, New York, 1986).

    Google Scholar 

  • D.C. Henry, Proc. Royal. Soc. London 188, 106 (1931).

    Google Scholar 

  • T. Hirono, K. Torimitsu, A. Kawana, J. Fukuda, Brain Res. 446, 189-194 (1988).

    Google Scholar 

  • Y. Huang, S. Joo, M. Duhon, M. Heller, B. Wallace, and X. Xu, Anal. Chem. 74, 3362-3371 (2002).

    Google Scholar 

  • Y. Huang, X.B. Wang, F.F. Becker, and P.R.C. Gascoyne, Biochim. Biophys. Acta 1282, 76-84 (1996).

    Google Scholar 

  • Y. Jimbo and A. Kawana, Bioelectrochem and Bioenergetics 29, 193-204 (1992).

    Google Scholar 

  • Y. Jimbo, A. Kawana, Y.P. Parodi, and V. Torre, Biol. Cybern. 83, 1-20 (2000).

    Google Scholar 

  • Y. Jimbo, H.P.C. Robinson, A. Kawana, IEEE Trans. Biomed. Eng. 40(8), 804-810 (1993).

    Google Scholar 

  • D. Kleinfeld, K.H. Kalher, and P.E. Hockberger, J. Neurosci. 8, 4098-4120 (1988).

    Google Scholar 

  • E. Knopfel, L. Guatteo, G. Bemardi, and N.B. Mercuri, European J Neurosci. 10, 1926-1929 (1998).

    Google Scholar 

  • H.R. Kruyt, Colloidal Science (Elsevier 1, New York, 1952).

    Google Scholar 

  • V. Levich, Physiochemical Hydrodynamics, pp. 472-530 (Prentice Hall, NJ 1962).

    Google Scholar 

  • M.P. Maher, J. Pine, J. Wright, and Y.C. Tai, J. Neurosci. Meth. 87, 45-56 (1999).

    Google Scholar 

  • P.G. Nelson, R.D. Fields, Y. Chang, and E.A. Neale, J. Neubiol. 21, 138-156 (1990).

    Google Scholar 

  • W. Nisch, J. Böck, U. Egert, H. Hämmerle, and A. Mohr, Biosensors and Bioelectronics 9, 737-774 (1994).

    Google Scholar 

  • J.L. Novak and B.C. Wheeler, J. Neurosci. Methods 23, 149-159 (1988).

    Google Scholar 

  • C.W. Oseen, Hydrodynamics, pp. 194-195 (Leipzip, Germany, 1927).

  • M. Ozkan, C.S. Ozkan, O. Kibar, M.M. Wang, S.N. Bhatia, and S. Esener, IEEE Journal of EMB Magazine 20(6), 144-151 (2001).

    Google Scholar 

  • M. Ozkan, T. Pisanic, J. Sheel, C. Barrow, S. Esener, and S.N. Bhatia, Langmuir 19, 1532-1538 (2003).

    Google Scholar 

  • J. Pine and J. Gilbert, Studies Neurosci. Abst. 8, 670-686 (1982).

    Google Scholar 

  • H.A. Pohl, Dielectrophoresis (Cambridge University Press, 1978).

  • D. Rakovic, M. Tomaševic, E. Jovanov, V. Radivojevic, P. Šukovic, Z. Martinovic, M. Carc, M. Radenovic, Z. Jovanovic-Jgnjatic, and L. Škaric, Informatica 23(3), 359-412 (1999).

    Google Scholar 

  • F.F. Reuss, Memo. Soc. Imperial. Natural, Moscow 2, 327 (1808).

    Google Scholar 

  • P. Sennet and J.P. Olivier, The Interface Symposium 57(8) (1965).

  • L. Stoppini, S. Duport, and P.L. Corrèges, J. Neurosci. Meth. 72, 23-33 (1997).

    Google Scholar 

  • K. Torimitsu and A. Kawana, Dev. Brain Res. 51, 128-131 (1990).

    Google Scholar 

  • X.B. Wang, Y. Huang, P.R.C. Gascoyne, and F.F. Becker, IEEE Trans. Ind. Appl. 33(3), 660-668 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, S., Yang, M., Zhang, X. et al. Electric Field Assisted Patterning of Neuronal Networks for the Study of Brain Functions. Biomedical Microdevices 5, 125–137 (2003). https://doi.org/10.1023/A:1024587112812

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024587112812

Navigation