Skip to main content
Log in

Iodine Hydrolysis Equilibrium

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The equilibrium constant for the hydrolytic disproportionation of I2

$$\begin{gathered} 3{\text{I}}_{\text{2}} + 3{\text{H}}_{\text{2}} {\text{O}} \rightleftharpoons {\text{IO}}_{\text{3}}^ - + 5{\text{I}}^ - + 6{\text{H}}^{\text{ + }} \hfill \\ {\text{ }}K_1 = \frac{{[{\text{IO}}_{\text{3}}^ - ][{\text{I}}^ - ]^5 [{\text{H}}^{\text{ + }} ]^6 }}{{[{\text{I}}_2 ]^3 }} \hfill \\ \end{gathered}$$

has been determined at 25°C and at ionic strength 0.2 M(NaClO4) in buffered solution. The reaction was followed in the pH range where the equilibrium concentration of I2, I, and IO3 are commensurable, i.e., the fast equilibrium

$$\begin{gathered} {\text{I}}_{\text{2}} {\text{ + I}}^ - \rightleftharpoons {\text{I}}_{\text{3}}^ - \hfill \\ {\text{ }}K_2 = \frac{{[{\text{I}}_{\text{3}}^ - ]}}{{[{\text{I}}_2 ][{\text{I}}^ - ]}} \hfill \\ \end{gathered}$$

is also established. The equilibrium concentrations of I2and I3 were determined spectrophotometrically, and the concentrations of all the other species participating in process (1) were calculated from the stoichiometric constraints. The constants determined are \log K_1 = -47.61\pm 0.07 and \log K_2 = 2.86 \pm 0.01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gy. Rábai and M. T. Beck, Inorg. Chem. 26, 1195(1987).

    Google Scholar 

  2. I. Lengyel, J. Li, K. Kustin, and I. R. Epstein, J. Amer. Chem. Soc. 118, 3708(1996).

    Google Scholar 

  3. J. L. Grant, P. De Kepper, I. R. Epstein, and M. Orbán, Inorg. Chem. 21, 2192(1982).

    Google Scholar 

  4. I. R. Epstein and K. Kustin, J. Phys. Chem. 89, 2275(1985).

    Google Scholar 

  5. I. Fábián and G. Gordon, Inorg. Chem. 36, 2495(1997).

    Google Scholar 

  6. O. Citri and I. R. Epstein, J. Phys. Chem. 91, 6034(1987).

    Google Scholar 

  7. I. Nagypál and I. R. Epstein, J. Chem. Phys. 89, 6925(1988).

    Google Scholar 

  8. D. M. Weitz and I. R. Epstein, J. Phys. Chem. 88, 5300(1984).

    Google Scholar 

  9. M. Eigen and K. Kustin, J. Amer. Chem. Soc. 84, 1355(1962).

    Google Scholar 

  10. R. M. Chapin, J. Amer. Chem. Soc. 56, 2211(1934).

    Google Scholar 

  11. O. Haimovich and A. Treinin, J. Amer. Chem. Soc. 71, 1941(1967).

    Google Scholar 

  12. C. H. Li and C. F. White, J. Amer. Chem. Soc. 65, 335(1943).

    Google Scholar 

  13. V. W. Truesdale, J. Chem. Soc. Faraday Trans. 91, 863(1995).

    Google Scholar 

  14. V. W. Truesdale and C. Canosa-Mas, J. Chem. Soc. Faraday Trans. 91, 2269(1995).

    Google Scholar 

  15. V. W. Truesdale, C. Canosa-Mas, and G. W. Luther, III, J. Chem. Soc. Faraday Trans. 90, 3639(1994).

    Google Scholar 

  16. D. A. Palmer and M. H. Lietzke, Radiochim. Acta 31, 37(1982).

    Google Scholar 

  17. A. Skrabal, Z. Elektrochem. 17, 665(1911).

    Google Scholar 

  18. A. Skrabal, Z. Elektrochem. 40, 232(1934).

    Google Scholar 

  19. S. Dushman, J. Phys. Chem. 8, 453(1904).

    Google Scholar 

  20. V. Sammet, Z. Phys. Chem. 53, 656(1905).

    Google Scholar 

  21. K. J. Morgan, M. G. Peard, and C. F. Cullis, J. Chem. Soc. A, p. 1865(1951).

  22. A. F. M. Barton and G. A. Wright, J. Chem. Soc. A, p. 2096(1968).

  23. S. M. Schildcrout and F. A. Fortunato, J. Phys. Chem. 79, 31(1975).

    Google Scholar 

  24. D. A. Palmer, R. W. Ramette, and R. E. Mesmer, J. Solution Chem. 13, 685(1984).

    Google Scholar 

  25. M. T. Beck and I. Nagypál, Chemistry of Complex Equilibria, (Ellis Horwood, Chichester, 1990), p. 136.

    Google Scholar 

  26. K. Nagy, T. Körtvélyesi, and I. Nagypál, Kinetics of Iodine Hydrolysis, prepared for publication.

  27. K. Atkári, T. Kiss, R. Bertani, and R. Martin, Inorg. Chem. 35, 7089(1996).

    Google Scholar 

  28. P. H. Tedesco and J. A. G. Quintana, J. Inorg. Nucl. Chem. 32, 2689(1970).

    Google Scholar 

  29. R. M. Wallance and S. M. Katz, J. Phys. Chem. 68, 3890(1964).

    Google Scholar 

  30. D. Katakis, Anal. Chem. 37, 876(1965).

    Google Scholar 

  31. G. Peintler, I. Nagypál, A. Jancsó, I. R. Epstein, and K. Kustin, J. Phys. Chem. 101, 8013(1997).

    Google Scholar 

  32. L. Zékány, I. Nagypál, and G. Peintler, PSEQUAD for Chemical Equilibria, Technical Distributors, 1991.

  33. A. D. Awtrey and R. E. Connick, J. Amer. Chem. Soc. 73, 1842(1951).

    Google Scholar 

  34. J. D. Burger and H. A. Liebhafsky, Anal. Chem. 45, 600(1973).

    Google Scholar 

  35. D. A. Palmer, R. W. Ramette, and R. E. Mesmer, J. Solution Chem. 13, 673(1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, K., Körtvélyesi, T. & Nagypál, I. Iodine Hydrolysis Equilibrium. Journal of Solution Chemistry 32, 385–393 (2003). https://doi.org/10.1023/A:1024507310112

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024507310112

Navigation